Spraying
December 12, 2017, Guelph, Ont – Syngenta Canada Inc. recently announced that Orondis Ultra fungicide is now available in a premix formulation.

Orondis Ultra combines mandipropamid (FRAC Group 40) with oxathiapiprolin (FRAC Group 49) to provide protection against late blight (Phytophthora infestans).

Orondis Ultra works through translaminar and acropetal activity, moving across the leaf surface as well as upwards into new growth via the plant’s xylem, or water-conducting vessels. Both modes of action protect the plant during periods of active growth.

Previously, a case of Orondis Ultra contained two components – Orondis Ultra A and Orondis Ultra B – that required individual measuring and tank mixing.

Now, the new premix formulation has a single product label, meaning the components no longer require mixing prior to use, and will be available in a 4 x 3.78 L case.

“Weather conditions in-season can create the conditions needed for late blight to develop and thrive,” explains Eric Phillips, product lead for fungicides and insecticides with Syngenta Canada. “The new Orondis Ultra premix formulation helps make proactive late blight management more convenient for growers.”

Orondis Ultra is also registered for aerial application in potatoes.

In addition to potatoes, Orondis Ultra can be used on head and stem brassica vegetables, including broccoli and cabbage, bulb vegetables, such as onion and garlic, leafy vegetables, such as arugula and celery, and cucurbit vegetables, including cucumber and squash. See the Orondis UItra label for a complete list of crops and diseases.

Orondis Ultra will be available for purchase as a premix formulation for the 2018 season.

For more information about Orondis Ultra, visit Syngenta.ca, contact your local Syngenta representative or call 877-964-3682.
Published in Diseases
December 11, 2017, Guelph, Ont – Bayer recently announced the launch of Sencor STZ, a new herbicide for broad-spectrum control of all major annual grass and broadleaf weeds in potatoes.

Sencor STZ combines Sencor with a new Group 14 mode of action, providing Canadian potato growers a new weed control option for their field. As a pre-emergent herbicide, Sencor STZ has uptake through the roots and shoots of weeds, providing early season weed control during critical crop stages. The product works on emerged weeds and provides residual broad-spectrum control to weeds yet to germinate. It will be provided in a co-pak.

“As the first innovation in the potato herbicide space in many years, Sencor STZ offers an exciting new tool for Canadian potato growers to combat a wide spectrum of weeds and maximize crop yield,” says Jon Weinmaster, crop and campaign marketing manager for horticulture and corn at Bayer.

Sencor is a proven performer that delivers reliable broad-spectrum weed control to Canadian potato growers. Trials utilizing Sencor STZ have demonstrated efficacy against Group 2- and 7-resistant biotypes, while providing essential control of Group 5-resistant broadleaf weeds, demonstrating the added benefit of the product’s Group 14 herbicide.

“Given the increasing occurrence of herbicide resistance and a potentially shrinking number of solutions available for combatting tough-to-control weeds, Sencor STZ presents a welcome opportunity for growers to ensure they have the crop protection they need,” says Weinmaster. “This new herbicide affirms Bayer’s position as a leader in potato solutions and our commitment to growing and furthering innovation within horticulture.”

Sencor STZ will be available to potato growers in Eastern Canada and British Columbia for the 2018 season. Sencor STZ comprises Group 5 (metribuzin) and Group 14 (sulfentrazone) herbicides.

For more information regarding Sencor STZ, growers are encouraged to talk to their local retailer or visit cropscience.bayer.ca/SencorSTZ.
Published in Weeds
October 10, 2017, Toronto, Ont – Vive Crop Protection recently announced that company CEO, Keith Thomas, has been elected to CropLife America’s board of directors for a three-year term.

“I am excited to contribute to CropLife America’s mission supporting modern agriculture,” said Thomas. “We are relatively new to the U.S. crop protection industry, but we’ve had a big impact. Our election to the CropLife America board recognizes our commitment to the industry. We plan to be here for the long-term.”

“We look forward to the business experience and academic perspective Keith brings to the CLA board,” said Jay Vroom, CropLife America’s CEO. “These qualities, combined with his interest in the role the industry plays in sustainability aligned with our technology innovation, makes him a great addition to the main governance body of CropLife.”

“Innovation is incredibly important to farmers today,” he added. “Using new technologies we can improve sustainability, productivity, and crop quality. As an innovative, technology-based company, we are proud to be part of this industry.”

Thomas is also a governor of the University of Toronto and is the chair of its Business Board.
Published in Companies
August 11, 2017, Toronto, Ont – Vive Crop Protection recently announced a new partnership with four biopesticide manufacturers to develop new and improved biopesticides, supported by Sustainable Development Technology Canada (SDTC).

Biopesticides are the fastest growing crop protection segment, but have suffered from limited effectiveness in field situations, shorter product life, poor compatibility with conventional pesticides, and limited combination products. Vive has recently demonstrated that the Allosperse Delivery System enhances the viability and performance of biopesticides.

“This project extends the scope of the Allosperse Delivery System and means that we can provide a complete solution to growers, whether they need a conventional, biological, or combination crop protection product,” said Keith Thomas, CEO of Vive. “We’re excited about the potential for these products and thank SDTC for the support.”

Over the next three years, Vive will work with the partner manufacturers to develop new and improved versions of their products. This work will be supported by SDTC.

Vive Crop Protection is developing environmentally-friendly pesticides made from organic matter,” said Leah Lawrence, president and CEO of Sustainable Development Technology Canada. “This Canadian-made technology represents an advancement in biopesticides that will deliver real economic and environmental benefits across Canada and around the world.”
Published in Companies
July 27, 2017, Waterloo, Ont. - A biotechnology company that created a spray that helps farmers and growers protect crops from frost damage was among the big winners at the Velocity Fund Finals held recently at the University of Waterloo. Velocity is a comprehensive entrepreneurship program at Waterloo.

Innovative Protein Technologies created Frost Armour, a spray-on-foam, after witnessing the effects of a devastating spring frost in 2012 that knocked out about 80 per cent of Ontario’s apple crop. Farmers would remove it after several days with another solution that converts it into a fertilizer.

"Frost damage not only affects farmers’ livelihoods, but also our food supply," said Erin Laidley, a Waterloo alumnus, who co-founded the company with Tom Keeling and Dan Krska, two alumni from the University of Guelph. "There are other spray-on solutions, but ours is non-toxic and has no negative environmental impact.”

During the competition, 10 companies pitched their businesses to a panel of judges representing the investment, startup and business communities. Judges considered innovation, market potential, market viability and overall pitch.

The following three companies were also grand-prize winners of $25,000 and space at Velocity. Three of the five top-prize-winning companies are based at Velocity Science.
  • Altius Analytics Labs is a health-tech startup that helps occupational groups better manage musculoskeletal injuries.
  • EPOCH is a skills and services marketplace that connects refugees and community members, using time as a means of exchange.
  • VivaSpire is making lightweight wearable machines that purify oxygen from the air without the need for high pressure.
For the first time, the prize of $10,000 for best hardware or science company went to a team that was not among the grand-prize winners. Vena Medical is making navigating through arteries faster, easier and safer by providing physicians with a camera that sees through blood.

During the VFF event, an additional 10 teams of University of Waterloo students competed for three prizes of $5,000 and access to Velocity workspaces.

The winners of the Velocity $5K are:
  • HALo works to provide manual wheelchair users with accessible solutions to motorize their wheelchairs.
  • QuantWave provides faster, cheaper and simpler pathogen detection for drinking water and food suppliers.
  • SheLeads is a story-based game that helps girls realize their unlimited leadership potential.
“Building a business is one of the boldest risks you can take, and yet our companies continue to demonstrate the vision, talent, and drive to think big and tackle challenging problems,” said Jay Shah, director of Velocity. “Today we are fortunate to benefit from an enormous wealth of experience from our judges who are leaders from the global investment, health and artificial-intelligence communities and entrepreneurs at heart. In helping Velocity award $125,000 in funding to these companies, we have taken a bet of our own in these founders, and said be bold, think big, and go out and change the world.”

The judges for the Velocity Fund $25K competition travelled from Palo Alto, San Francisco and Toronto. They were Seth Bannon, founding partner, Fifty Years; Dianne Carmichael, chief advisor of health tech, Council of Canadian Innovators; Eric Migicovsky, visiting partner, Y Combinator; Tomi Poutanen, co-CEO, Layer 6 AI.

The judges for the Velocity Fund $5K competition were Kane Hsieh, investor, Root Ventures; Tobiasz Dankiewicz, co-founder, Reebee; Karen Webb, principal, KWebb Solutions Inc.

For more information on the Velocity Fund Finals, please visit www.velocityfundfinals.com
Published in Spraying
July 26, 2017, Ontario - Stemphylium leaf blight (Stemphylium vesicarium) of onion starts as yellow-tan, water-soaked lesions developing into elongated spots. As these spots cover the entire leaves, onions prematurely defoliate thereby reducing the yield and causing the crop to be more susceptible to other pathogens.

Stemphylium was first identified in Ontario in 2008 and has since spread throughout the Holland Marsh and other onion growing areas in southwestern Ontario.

Stemphylium leaf blight can sometimes be misdiagnosed as purple blotch (Alternaria porri), as they both have very similar symptoms initially. Purple blotch has sunken tan to white lesions with purple centers while Stemphylium tends to have tan lesions without the purple centers.

Stemphylium spores are dispersed by wind. Spore sampling at the Muck Crops Research Station using a Burkard seven-day spore sampler detected an average of 33 spores/m3 in 2015 and seven spores/m3 in 2016.

In ideal conditions, leaf spot symptoms occur six days after initial infection. Stemphylium tends to infect dead tissue or wounds, often as a result of herbicide damage, insect feeding or from extreme weather.

Older onion leaves are more susceptible to infection than younger leaves and symptoms are traditionally observed after the plants have reached the three- to four-leaf stage.

Over the last few years, Botrytis leaf blight (Botrytis squamosa) has become less of an issue and has been overtaken by Stemphylium as the most important onion disease — other than maybe downy mildew.

This may be because the fungicides used to target Stemphylium are likely managing Botrytis as well. Since Stemphylium can be so devastating and hard to control, fungicides are now being applied earlier in the season which may be preventing Botrytis to become established.

Botrytis squamosa overwinters as sclerotia in the soil and on crop debris left from the previous year and infects onions in mid-June when temperatures and leaf wetness are favourable for infection. In the Holland Marsh, Stemphylium lesions were first observed on June 29, 2015 and July 7, 2016.

The primary method of management is through foliar fungicides such as Luna Tranquility, Quadris Top and Sercadis. Keep in mind that Sercadis and Luna Tranquility both contain a group 7 fungicide so remember to rotate and do not make sequential applications.

The effectiveness of these fungicides in the future depends on the spray programs you choose today. There are already Stemphylium isolates insensitive to several fungicides in New York so resistance is a real and very serious issue with this disease.

Remember to rotate fungicide groups with different modes of actions to reduce the possibility of resistance. A protective fungicide is best applied when the onion crop has reached the three-leaf stage, however it may not be necessary in dry years.

Research is currently being conducted at the Muck Crops Research Station to improve forecasting models to identify the optimal timing for commercial growers to achieve good control.

BOTCAST disease forecasting model is available in some areas of Ontario to help growers predict the activity of the disease. Warm, wet weather between 18-26°C is most favourable for disease development. Regular field scouting is still the best method to assess disease levels.

Plant spacing that permits better air movement and irrigation schedules that do not extend leaf wetness periods may be helpful in some areas. Recent work at the Muck Crops Research Station has shown that spores increase two to 72 hours after rainfall with eight hours of leaf wetness to be optimal for the pathogen. Irrigate overnight if possible so by morning the leaves can dry out and you don’t prolong that leaf wetness period.

To lower inoculum levels it is crucial to remove or bury cull piles and to bury leaf debris left from the previous year’s crop through deep cultivation. Stemphylium of onion has many hosts including leeks, garlic, asparagus and even European pear.

Take the time to rogue out volunteer onions or other Allium species in other crops nearby and remove unnecessary asparagus or pear trees to lower inoculum levels. As with any other foliar disease of onion, it is beneficial to rotate with non-host crops for three years.

To prevent the development of resistance, it is essential to always rotate between different fungicide groups and/or tank mix with a broad spectrum insecticide. Current products registered for Stemphylium leaf blight of onion are listed by fungicide group below:

Group 7 - Sercadis

Group 7/9 - Luna Tranquility

Group 11/3 - Quadris Top
Published in Diseases
July 25, 2017, Ontario - The Pest Management Regulatory Agency (PMRA) recently announced the approval of URMULE registrations for Confine Extra fungicide (mono and di-potassium salts of phosphorus acid 53%) for the suppression of bacterial leaf spot (Xanthomonas campestris p.v. vitians) on leaf lettuce in Canada.

Where possible, rotate the use of Confine Extra (Group 33) with fungicides that have different modes of actions. Apply at a rate of 7 L/ha in a minimum of 100 L of water/hectare. Use a maximum of 6 foliar applications per growing season. Pre-harvest Interval (PHI) is 1 day.

Confine Extra is currently registered for downy mildew of lettuce, endive, radicchio as well as most brassica crops.

Follow all other precautions and directions for use on the Confine Extra label carefully.

For a copy of the new minor use label visit the PMRA label site: http://pr-rp.hc-sc.gc.ca/ls-re/index-eng.php
Published in Diseases
The tip-and-pour method, as well as poorly designed pumps, can expose workers to injury and companies to significant financial losses.

Every day, handlers and applicators transfer potentially hazardous chemicals and concentrates such as pesticides, herbicides, insecticides, fungicides, and liquid fertilizers from large drums into smaller containers or mixing tanks. This transfer process can have serious consequences if manual “tip-and-pour” techniques or poorly designed pumps are used.

Whether the chemicals are toxic, corrosive, or flammable, the danger of accidental contact can pose a severe hazard to workers.

In fact, each year 1,800 to 3,000 preventable occupational incidents involving pesticide exposure are reported in the U.S. A closed system of transferring chemicals reduces unnecessary exposures by providing controlled delivery of chemical products without fear of worker exposure, over-pouring, spilling, or releasing vapours.

“When handling pesticides, toxicity and corrosiveness are the main dangers, but even organic pesticides can be harmful if there is exposure,” says Kerry Richards, Ph.D., president elect of the American Association of Pesticide Safety Educators and former director of Penn State’s Pesticide Safety Education Program. “No matter what their toxicity level, all chemicals, even those that are organic are a particular contact exposure risk if they are corrosive.”

In addition to the potential for injury, there can also be serious financial ramifications for the grower or ag product manufacturing facility if pesticides or liquid chemicals spill.

“Beyond workers compensation issues related to exposure, there can be other huge potential liabilities,” Richards says. “This is particularly true if a pesticide gets into a water source, kills fish, or contaminates drinking water.”

Richards, who works with the National Pesticide Safety Education Center, has seen and heard many examples of worker and environmental exposure from pesticides during more than 30 years of pesticide safety education experience.

“Exposure risk is highest for those loading chemicals into mix tanks because it is more concentrated and hazardous before diluted with water,” she says. “Any time you lose containment of the chemical, such as a spill, the risks can be serious and spiral out of control.”

Corrosive chemicals, for example, can severely burn skin or eyes, and many chemical pesticides are toxic when touched or inhaled.

“Some organic herbicides are so highly acidic that they essentially burn the waxy cuticle off the above ground parts of plants, killing them,” says Richards. “If you splash it in your eye or on your skin, it can burn in the same way and cause significant damage.”

Some chemicals are flammable as well, and if not properly handled and contained, can be ignited by sparking from nearby motors or mechanical equipment. The danger of a fire spreading can be serious both in the field and at ag product manufacturing facilities.

In addition to the cost of cleanup or treating injuries, substantial indirect costs can also be incurred. These include supervisors’ time to document the incident and respond to any added government inspection or scrutiny, as well as the potential for slowed grower production or even a temporary shutdown at ag manufacturing plants.

“The direct and indirect costs of a pesticide spill or injury can be substantial, not the least of which is the loss of wasted chemicals,” says Richards. “Pesticides, particularly newer concentrated formulations, are very expensive so spilling a few ounces could cost you several hundred dollars in lost product during a single transfer.”

Traditional practices of transferring liquid chemicals suffer from a number of drawbacks.

Manual techniques, such as the tip-and-pour method, are still common today. Tipping heavy barrels or even 2.5-gallon containers, however, can lead to a loss of control and over pouring.

“When manually transferring chemicals from bulk containers, it is very difficult to control heavy drums,” cautions Richards. “I’d advise against it because of the significantly increased risk of exposure or a spill, and the added potential of a back injury or muscle strain.”

Although a number of pump types exist for chemical transfer (rotary, siphon, lever-action, piston and electric), most are not engineered as a sealed, contained system. In addition, these pumps can have seals that leak, are known to wear out quickly, and can be difficult to operate, making precise volume control and dispensing difficult.

In contrast, closed systems can dramatically improve the safety and efficiency of chemical transfer. California’s Department of Pesticide Regulation, in fact, requires a closed system for mixing and loading for certain pesticides so handlers are not directly exposed to the pesticide.

“The availability of new technology that creates a closed or sealed system is ideal for handling pesticides or other dangerous chemicals, and should become a best management practice,” suggests Richards. “With such devices ... pesticide handlers can maintain a controlled containment from one vessel to another and significantly reduce any potential for exposure or spill.”

A sealed system delivers liquids to an intermediate measuring device and is useful for low toxicity liquids. A closed system moves the material from point A to point B through hoses using dry-break fittings on the connection points. This prevents leaking and exposure to the handler which helps guarantee safety. Liquids are transferred from the source container, into the measuring system, and then to the mix tank.

Small, versatile, hand-operated pressure pumps are engineered to work as a system, which can be either closed or sealed. The pumps can be used for the safe transfer of more than 1,400 industrial chemicals, including the most aggressive pesticides.

These pumps function essentially like a beer tap. The operator attaches the pump, presses the plunger several times to build up a low amount of internal pressure, and then dispenses the liquid. The device is configured to provide precise control over the fluid delivery, from slow (1ML/ 1 oz.) up to 4.5-gallons per minute, depending on viscosity.

Because such pumps use very low pressure (<6 PSI) to transfer fluids through the line and contain automatic pressure relief valves, they are safe to use with virtually any container from 2-gallon jugs to 55-gallon drums.

When Jon DiPiero managed Ricci Vineyards, a small wine grape vineyard in Sonoma, Calif., he sought a safer, more efficient way to transfer pesticides for mixing and spraying that complied with the state’s closed system requirement for certain pesticides.

“We had to fill 2.5-gallon containers from a 55-gallon drum,” says DiPiero. “Traditional tipping and pouring from a drum wasn’t going to work due to the potential for spills, splashes, over pouring and chemical exposure, as well as the state mandate for a closed system for some pesticides.”

DiPiero turned to GoatThroat Pumps and was happy with the results for a number of reasons.

“Because the pump is closed, sealed, and allows containers to remain in an upright position, it complied with state regulation and virtually eliminated the potential for all forms of chemical exposure,” DiPiero says.

He adds the air pressure supplied by the hand pump allows the precise flow required into a measuring cylinder.

In case of overfill, “the operator can open a valve to release air pressure and the pesticide will backflow into the tank with no cross contamination,” DiPiero says. “This gave us the exact amount we needed so there was no waste.”

According to DiPiero, a multi-directional spray attachment also enables rinsing of every corner of the container without having to pour into it and shake it. He says this helps to minimize exposure when cleaning a container for reuse and satisfies California “triple rinsing” requirements.

“Whether for pesticides, herbicides, fungicides, or liquid fertilizers, a closed and sealed pump design could help with the safe production or mixing of any liquid chemical,” says DiPiero.

When Lancaster Farms, a wholesale container plant nursery serving the Mid-Atlantic and New England regions, required a lower pH to adjust its well water for a pesticide spray application, it had to transfer sulfuric acid to buffer the spray water.

According to Shawn Jones, Lancaster Farms’ propagation and research manager, the nursery chose to purchase 55-gallon drums of sulfuric acid to raise chemical pH. The drums of chemicals were much more cost effective than multiple 2.5-gallon containers and much easier to recycle. However, Jones was wary of the danger that tipping and pouring acid from the drums would pose, along with pouring bleach and another strong disinfectants for different uses in the propagation area.

“We use 40 percent sulfuric acid to buffer our spray water,” Jones says. “Our irrigation water is all recycled from ponds, with the drum storage areas relatively close to our water source, so we wanted to avoid any possibility of accidental spillage.”

Previously, the nursery had used siphon pumps to transfer the acid, bleach, and disinfectant, but Jones was dissatisfied with this approach.

“None of our siphon pumps lasted more than six months before we had to replace them, and none allowed metering with the kind of precision we required,” he says.

Instead, Jones chose to implement several closed, sealed GoatThroat Pumps, along with graduated cylinders for precise measurement.

“With the pumps, the drums always remain in an upright position so they won’t tip over accidentally,” Jones says.

The one-touch flow control dispenses liquids at a controlled rate.

“We get precise measurement into our mix tanks. We use every drop, spill nothing, and waste nothing.”

In terms of longevity, Jones’ first sealed pump has already lasted six years and outlasted a dozen previous siphon pumps.

“Our GoatThroat Pumps paid for themselves in safety and savings our first growing season, and should last a decade or more with just routine maintenance or repair,” Jones concludes. “Any grower, farmer, or nursery that needs to move or measure dangerous liquids safely and reliably should consider one.”

Agricultural chemicals are very expensive, and growers are always looking for ways to decrease the cost of inputs to help increase profits. Sealed systems and closed systems allow for accurate and precise measuring of chemicals, which ensures that you’re using only the amount of product required and not one extra drop.

Taking the guesswork out of measuring costly materials, and providing an efficient means of transferring custom blended or dilute products from original containers to mix tanks or back pack sprayers cuts input costs. This keeps expenses to a minimum, with the important bonus of increasing the safety of handlers by reducing the potential exposure to the chemical, which helps increase the bottom line and can assist with regulatory compliance.
Published in Chemicals
July 19, 2017 - In 2016, Health Canada’s Pest Management Regulation Agency (PMRA) completed a re-evaluation of carbaryl, a common chemical thinning regime for Canadian apple producers.

The re-evaluation led to some changes and restrictions on the product label. This included eliminating its use in residential areas plus as an insecticide on some fruit and vegetable crops.

Apple thinning has remained on the label but at reduced rates:
  • Maximum seasonal rate of 1.5 kg a.i./ha and an REI of 14 days for hand thinning [high-density trellis production such as spindle or super spindle]
  • Maximum seasonal rate of 1.0 kg a.i./ha and an REI of 17 days for hand thinning [dwarf, semi-dwarf and full-sized trees]
As a result, research is underway to discover a new thinning regime for Canadian apple producers.

Researchers from Cornell Cooperative, CCE Lake Ontario Fruit Program educator and the Lamont Fruit farm conducted a three-year mechanical thinning trial. Watch above for more!
Published in Chemicals
July 19, 2017, Guelph Ont. - A new weather database providing real-time updates from 80 automated weather stations along with customized weather-based recommendations from agronomists is helping Ontario crop farmers make key growing decisions in real time.

Access to this new type of information means farmers can adjust the timing of everything from planting and necessary crop applications to harvest to get the most out of each acre.

Three major Ontario co-operatives, AGRIS Co-operative, Wanstead Co-operative and Haggerty Creek, recognized the need for a weather database providing real-time updates and customized recommendations from agronomists to Ontario growers.

In 2016, with Growing Forward 2 (GF2) funding accessed through the Agricultural Adaptation Council, the group successfully launched the AGGrower Dashboard, a project bringing southwestern Ontario growers together and assisting farmers making informed agronomic decisions.

The AGGrower Dashboard gives producers an edge when it comes to dealing with weather; one of the most unpredictable and volatile aspects of farming. Participating growers have access to a database dashboard with 80 automated weather stations across southwestern Ontario measuring variables including temperature, rainfall and heat units.

“We allow farmers to go onto the database and plot their individual field locations,” explains Dale Cowan, senior agronomist, AGRIS and Wanstead co-operatives. “Once they input their planting information, we give them field specific rainfall and heat unit data and then start to map out the growth stages in the crops throughout the growing season.”

This project is a game-changer for the Ontario agricultural industry because it not only allows farmers to access information from the entire region, but also sends farmers timely agronomic advice and recommendations for their crops based on the crop stage and weather.

“Everyone’s interested in how much it rains,” explains Cowan, “but what you have to know from a farm management standpoint, is if it rains, what do I need to do based on my crop growth stage?”

The collaboration of the three co-operatives allows producers to make smart, informed decisions that end up benefiting not just the producer, but also the industry, land and environment.

Cowan explains the database using nitrogen fertilizer application as an example. A farmer would never apply nitrogen the day before a big rainfall because the moisture would cause leaching.

As a member of the database dashboard, the farmer could have a more accurate reading on weather or receive a warning and know to hold off on nitrogen application. Small management changes like this go a long way in helping the farmer act as an environmental steward of the land.

When producers sign up, they enter geographical and crop information for each of their fields and adjust notification settings to what fits their lifestyle best. Farmers can group fields together to reduce the amount of notifications they receive, or check the site manually.

“Once you put your data in, you can see the entire growth season for your fields,” says Cowan. “Farmers can log onto the website and see weather-wise what’s going on in their fields in near real time.”

This is the first year all 80 weather stations are operating and recording data, but even during partial roll-out the previous year, the 160 early adopters using the dashboard were pleased with the results and Cowan expects to see an increase in farmer memberships this year.

This project was funded in part through Growing Forward 2 (GF2), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario.
Published in Equipment
June 27, 2017 – Why do the best fruits seem to have the shortest shelf life? It’s a challenge that plagues fresh fruit markets around the world, and has real implications for consumers and fruit growers.

Now, new research from University of Guelph has led to the development of a product that extends the shelf life of fresh fruits by days and even weeks, and it is showing promise in food insecure regions around the world.

“In people and in fruit, skin shrinks with age — it’s part of the life cycle, as the membranes start losing their tightness,” said Jay Subramanian, Professor of Tree Fruit Breeding and Biotechnology at the University of Guelph, who works from the Vineland research station. “Now we know the enzymes responsible for that process can be slowed.”

The secret, according to Subramanian, is in hexanal, a compound that is naturally produced by every plant in the world. His lab has developed a formulation that includes a higher concentration of hexanal to keep fruit fresh for longer.

Subramanian’s research team began experimenting with applying their formula to sweet cherry and peaches in the Niagara region. They found they were able to extend the shelf life of both fruits and spraying the formula directly on the plant prior to harvest worked as well as using it as a dip for newly harvested fruit.

“Even one day makes a huge difference for some crops,” Subramanian said. “In other fruits like mango or banana you can extend it much longer.”Once the formula is available on the market, Subramanian sees applications on fruit farms across Ontario, including U-pick operations, where an extended season would be beneficial. But the opportunities could also make a significant impact on fruit markets around the world.

Subramanian’s research team was one of only 19 projects worldwide awarded an exclusive research grant from the Canadian International Food Security Research Fund, a program governed by the International Development Research Centre and funded through Global Affairs Canada.

The team used the funding to collaborate with colleagues in India and Sri Lanka on mango and banana production. Mangos are one of the top five most-produced fruits in the world, with 80 per cent of the production coming from South Asia. After more than three years, researchers learned that by spraying the formula on mangos before harvest, they were able to delay ripening by up to three weeks.

“A farmer can spray half of his farm with this formulation and harvest it two or three weeks after the first part of the crop has gone to market,” Subramanian said. “It stretches out the season, the farmer doesn’t need to panic and sell all of his fruit at once and a glut is avoided. It has a beautiful trickle-down effect because the farmer has more leverage, and the consumer gets good, fresh fruit for a longer period.”

The team is at work in the second phase of the project applying similar principles to banana crops in African and Caribbean countries, and hopes to also tackle papaya, citrus and other fruits.

The formula has been licensed to a company that is completing regulatory applications and is expected to reach the commercial market within three years.
Published in Research
June 15, 2017, Guelph, Ont. - It seems like recently there have been a rash of proposed or pending pesticide regulation changes that affect field growers, and tomato growers are no exception.

There are re-evaluations ongoing for a number of products used in tomatoes, including mancozeb, neonicotinoids, and Lannate, as well as Ethrel, but the big one that comes to mind for field tomato growers is the proposed changes to the use of chlorothalonil (Bravo, Echo).

The final outcome of this review is not yet known, but it’s likely that significant changes to the chlorothalonil labels are coming.

Chlorothalonil is a go-to fungicide for tomato growers. Data from trials at Ridgetown Campus demonstrate its value. Chlorothalonil is often just as good at controlling early blight, Septoria leaf spot, and anthracnose fruit rot as alternative fungicides, and it also provides protection from late blight, which many targeted fungicides do not.

It’s a good value active ingredient for tomato disease management and has a low risk of resistance development. But, if proposed changes go through, the number of chlorothalonil applications you can use will be drastically cut. READ MORE 
Published in Chemicals
May 17, 2017 - In an effort to educate growers about the use of injectors in chemigation and fertigation agricultural applications, Mazzei has put together a PowerPoint training program.

The program is available in both English and Spanish and can be viewed for free through the Mazzei website and the MazzeiSolutions YouTube page.

The presentation was designed to help users properly size Mazzei chemigation/fertigation systems for various applications and to better understand the most effective methods.
Published in Chemicals
The post-application risk of carbaryl to workers and growers alike has recently been re-evaluated by Health Canada’s Pest Management Regulatory Agency (PMRA) and some cautionary changes have been made for both low and high-density apple trellis systems.

“Rates are not reduced,” assured Amanda Green, tree fruit specialist with the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), and apple session moderator at the Ontario Fruit and Vegetable Growers’ Convention (OFVC). “It’s the number of applications per year and total amount applied per year that is reduced.”

She explained that growers are now limited to just one carbaryl application per season and they must stay under 1.0 kg of a.i. per hectare for low-density orchards, and 1.5 kg a.i. per hectare for high-density orchards.

“This has been quite a challenge,” Green said, adding that three panelists – Charles Stevens of Wilmot Orchards; Zac Farmer of Watson Farms Ltd. and Sean Bartlett with N.M. Bartlett Inc. – had been invited to speak about their thinning experiences and how they plan to manage crop load in the future.

Charles Stevens

Stevens opened the panel discussion with a question for the audience.

“If you have perfect bloom, perfect set, and you have chemically thinned and left all king blooms – have you over thinned, under thinned or got it just right? How many in this room have over thinned or under thinned?” he asked. Not a single hand was raised. He answered that given 10 per cent of bloom set gives a full crop of apples and you have left 20 per cent of apples on the tree, you have under thinned by 10 per cent.

“My wife says it’s like I have PMS for two weeks every year,” Stevens said. “Thinning is one of the most stressful jobs on the farm and makes us moody, grumpy and stressed out.”

“I want to touch on three different apples: Honeycrisp, Gala and Ambrosia. Last year, we thinned Honeycrisp in a totally different way. We found out from Michigan, where they did some research, that two doses of NAA [napthaleneacetic acid] by itself at 10 parts per million – one at full bloom and one at petal fall – came out with perfect thinning jobs after performing two trials,” Stevens said.

“So, we applied 10 parts per million at full bloom and then it got hot and we got a bit scared. We backed off to 7.5 parts per million at petal fall. Fear is the detriment of thinning. At the end of the day, all fruit buds had very few seconds, or side blooms. If I had to do it over again, I would have gone in again at 10 to 12 mm fruit size with a full dose of Sevin [carbaryl] and 10 parts per million of NAA, resulting in me chemically thinning three times. At the end of the day, Sevin was not used for thinning Honeycrisp last year,” he said.

“We used ATS [ammonium thiosulphate] on Honeycrisp last year instead of Sevin as an alternative and had little response. It’s very sensitive to environmental conditions and thus was not an effective alternative,” said Stevens.

“The Galas were under thinned again last year. Normally, we do a full dose of Sevin on everything at petal fall but we missed that window. There was too much going on and it got hot, so we didn’t get it on. And, because of the restrictions, we’re not going to do that down the road,” he said.

“Sevin is the most important thinning chemistry at this time as the balance of the thinning chemistries perform better when mixed with Sevin. For Galas, we put on a full dose of Sevin, 115 parts per million of 6-BA at 8 to 10 mm fruit size, and we felt we did a good job. But, at the end of the day, we still left too many apples on the trees,” said Stevens.

“We will use 6-BA for size enhancement. It’s not strong as a chemical thinner so, without Sevin, it does not do a good job on anything,” he said.

“In all my chemical thinning days, Ambrosia is the only crop that I dropped on the ground one year because it was temperature and climate related. I used the same chemistry as the years before and it was cloudy for a couple of days. I sprayed and the next day it was 28 degrees [Celsius]. We dropped all our Ambrosia on the ground. That was probably the only over thinning of apples I have ever done,” said Stevens.

“Last year, we did a perfect job on Ambrosia. I feel that the size of the apple at around at least 11 to 12 mm bud size is the time to thin. From my experience, anything earlier and you’ll over thin Ambrosia. We use a full dose of Sevin and about 60 parts per million of 6-BA. So, that’s the story on Ambrosia. It’s a little simpler apple to thin and makes for a beautiful crop,” he said.

“In the world of chemistries that are coming along, there are two acids that are in the works and hopefully will be registered for use here in Canada. One is called ACC [1-aminocyclopropane carboxylic acid] and the other is Brevis,” he said. “Both ACC and Brevis are stand alone products that don’t require the use of Sevin and also have a wider range of use, meaning that they can be used on a larger apple.”

Zac Farmer

“I’m going to touch on the same three apples as Charles: Honeycrisp, Gala and Ambrosia. We were in the same boat as him. In the past, we took the same approach with a Sevin (application) at petal fall early,” said Farmer.

“We chose not to do that last year to jump-start our learning curve on living without Sevin, using it just once a season.”

On younger Honeycrisp trees, Farmer applied 10 parts per million of NAA, thinning at the 100-gallon rate.

“It seemed to work nicely with two applications,” he said. “We live just 10 minutes from Charles and we got the same heat but we didn’t back off on the second application except for two blocks at 5 parts instead of 10 parts per million NAA. We wish we hadn’t. We did less hand thinning last year, and I still wasn't happy with the amount we took off.”

“We did some trials with ATS, our second year with it, and we’re running two per cent oil. At full bloom, you’re aiming for the kings. You have to watch the bees to make sure they’re done pollinating or you’ll burn a lot more off than you wanted. We did that on a block of Gala. Not everything got burned but there was a valley in the field where pretty much everything there got smoked due to lack of pollination. It was all sprayed at the same time so it’s very weather and time sensitive,” said Farmer.

They also did some trials with lime-sulphur at 1.2 per cent with two per cent oil.

“We did it again this year and we’re happy with it. It’s a lot more finicky than ATS so we’re going to do more ATS this year,” he said.

“All that stuff we try to do early, then we come back in with a litre of Sevin or two litres of MaxCel, plus one or two per cent oil. If we’re limited on the Sevin, we’re going to have to do more with the NAA and those new thinners once they come along,” said Farmer.

“On Ambrosia, we’ve never used a lot of Sevin. We do thin a little bit earlier than Charles but usually one litre of MaxCel is enough, or a half litre of Sevin on the really heavy stuff. They seem to respond really well to that. I think Ambrosia is very manageable with one application of Sevin, it’s Gala that’s a really hard one.”

Last year, Watson Farms Ltd. had a drought so thinned hard on the Gala. The variety never did size and part of that was due to lack of moisture.

“On older trees, we did some side by side trials with Gala and Honeycrisp with two per cent ATS versus 10 parts NAA at full bloom, and there was a noticeable difference between the two.”

“If you hit that ATS on the nose, it thins as fast as you can walk by the tree. We’re very happy with that. I’m not saying that’s what we’ll rely on as it’s very weather sensitive but we’ll keep working on it and fine tuning it so we can knock those fruit off at early bloom,” concluded Farmer.

Sean Bartlett

“I just want to touch on some of the different things guys across the province are doing for apple thinning,” said Bartlett.

“Ultimately we are doing more and more to get down to the promised land for fruit per tree to create the best returns at the end of the day. With this, we have started to follow many precision thinning tools to do this, including pruning models, carbohydrate model, and pollen growth tube model, to name a few. With these models in mind, we have started thinning at different timings and more often lending itself to the nibble thinning approach,” he said.

“We’re also having to re-invent old chemistry using bloom thinners, like lime sulphur and oil, and ATS and NAA. Of course, we’re looking for some new chemistries down the road, like Brevis and ACC. We have also started reaching out to other non-chemical alternatives, such as mechanical thinning,” said Bartlett.

“Mechanical thinning is popular in Europe where over 600 of the Darwin Blossom Thinners are in use in pome and stone fruit orchards. These are popular in peaches in North America but slow to take hold in apples, perhaps because there are some great thinning products available there,” he said.

“A three-year study by Cornell University found that it was possible to replace a conventional thinning program with mechanical thinning. In the study, they compared a comprehensive thinning program with NAA, 6BA and Sevin to mechanically thinning with a follow up of 6BA. In the end, they were able to perform comparably with the standard on Honeycrisp and Gala,” said Bartlett.

“The important factors in this were the correct spindle speed, depth, and speed of the tractor. It took them a few attempts to perfect the thinning response. It will be different for most blocks as canopies are never the same,” he said.

“What we have learned is more strings are better, and the deeper into the canopy they can get is also better. Hedged rows are optimal and 6BA has a synergistic affect with the use of mechanical thinners. Thus far, the work has not shown to cause fire blight but, if in doubt or a troubled block, I would recommend following up with a strep.”

“Do your own trials and keep good records. Research is proving that mechanical blossom thinning is a viable option,” he concluded.
Published in Chemicals
Days may be numbered for carbaryl, an insecticide and apple-thinning agent commonly sold under the brand name Sevin by Bayer.

Health Canada’s Pest Management Regulation Agency (PMRA) completed a re-evaluation of carbaryl in 2016, which led to some changes and restrictions on the product label. This included eliminating its use in residential areas plus as an insecticide on some fruit and vegetable crops. Apple thinning has remained on the label but at reduced rates:
  • Maximum seasonal rate of 1.5 kg a.i./ha and an REI of 14 days for hand thinning [high-density trellis production such as spindle or super spindle]
  • Maximum seasonal rate of 1.0 kg a.i./ha and an REI of 17 days for hand thinning [dwarf, semi-dwarf and full-sized trees]
As a result, research is underway to discover a new thinning regime for Canadian apple producers.

“We’re restricted to one application per season with further restrictions on re-entry into the orchard,” explained Dr. John Cline, apple researcher and associate professor at the University of Guelph. “We’re looking for an alternative that works as well as carbaryl.”

He recently shared the initial findings of his work, which he undertook with the assistance of graduate student Michelle Arsenault, during the Ontario Fruit & Vegetable Convention held in Niagara Falls, Ont.

“Apple thinning is something done to prevent over cropping and small fruit,” said Dr. Cline. “When we thin early, we are able to focus more energy resources into the fruit that persist until harvest. When you have larger fruit, harvest efficiencies increase dramatically.”

Hand thinning is the least desirable way of managing crop load because it has the least effect on return bloom and final size at harvest but it is still an option. It also requires a large labour requirement.

“We rely on bio-regulators or chemical thinners as a result,” Dr. Cline said. “We have to remember that fruit drop in early June is a natural process. The tree goes through this process naturally and the bio-regulators are meant to augment it.”

There are a number of bio-regulators registered and these affect the plant metabolism and add to the natural process of fruit drop. The registered products in Canada are Sevin XLR Plus [carbaryl], MaxCel [6BA] and Fruitone [NAA]. The industry is hopeful some alternatives will become available. One product registered in the U.S. is Ethephon or Ethrel, which involves ethylene needed for fruit drop.

Dr. Cline’s research team’s objectives were to determine the optimal concentration of new and existing plant bio-regulators for the thinning of Gala during fruit set. Doing an early spray followed by a second spray was the focus of their work plus what thinners perform the best, and what the final crop load, yield and final size would be.

The first experiment was done on Gala using a hand-thinned control plot and compared to carbaryl and 6BA/MaxCel sprays.

Late frost in 2015 forced the researchers to find another orchard where they applied thinners at the 17 mm stage. The treatment was thought to be ineffective because it was conceivably applied too late. Compared with 2014, they found fruit set was 40 per cent, considered too high for a commercial crop, and 2015 was slightly less than that.

“In 2014, we found that 6BA tank mixed with NAA reduced fruit set by 50 per cent, whereas the ACC compound did not work at all,” Dr. Cline said. “In 2015, 6BA tank mixed with 5ABA and ACC reduced fruit set to a level comparable with carbaryl.”

The crop load at harvest was reduced with thinners in 2015, explained Dr. Cline. The hand thinned was just under three fruits per trunk cross-sectional area while the target was about five to seven, so crop load was light so the trees probably didn’t need the aggressive thinning that might be needed in a heavy crop year.

The researchers tried high and medium rates with the thinners and found a reduction in yield but no effect on quality factors, such as sugars, titratable acidity, starch index and fruit firmness.

Conclusions on the two-year study suggest that at low rates, the ethylene precursors were effective the one year. However, crop loads were light in both years of the study and response could change with a heavier crop. Dr. Cline said the study needs to be repeated over several years to get a more definite answer.

ACC and 5ABA appear to be effective alternatives for Gala if carbaryl is removed from registration, he added.

“I think the results are encouraging.”

In a study working with Gala conducted over 2013 and 2014 – before the concern with carbaryl came up – researchers wanted to know if growers applied the first thinning spray at 8 mm, what happened when the second spray was applied? This was a concern for growers who wanted to know if they should go in with a second spray and, if so, what should they use.

In 2013, researchers used a standard rate of carbaryl, as recommended for Gala, and applied at 8 mm, then again with a second spray in seven days, near the closing of the window for thinning. It seemed to work, Dr. Cline said, adding carbaryl did reduce fruit set.

“A tank mix of 6BA and carbaryl applied at 8 mm followed by carbaryl at 15 mm thinned the most.”

Fruit size, for the untreated, was around 140 grams. In 2013, 6BA followed by a carbaryl spray produced the largest fruit size.

“Yields always go down when you thin but hopefully you are compensated by the higher price of the fewer but larger fruits,” Dr. Cline said.

“To summarize, 12 to 14 days was required from the time of the first spray to initiate fruit drop. A single application at 8 mm, applied separately or tank mixed, of 6BA and carbaryl was the most effective.”

When it comes to future research, new thinning techniques and mechanical blossom thinning are on the list to be examined. According to the industry, string thinners are more effective now with the movement toward high-density, spindle-type orchards. New products, such as Metamitron – a herbicide registered in the EU and U.S. – are also of interest.

“We will ... be looking at that,” Dr. Cline said.
Published in Chemicals
April 17, 2017, Guelph, Ont – The Pest Management Regulatory Agency (PMRA) recently announced the approval of an URMULE registration for Prowl H2O herbicide for control of labeled weeds on direct seeded, green (bunching) onions grown on muck soil in eastern Canada and British Columbia.

Prowl H2O herbicide was already labeled for use on a number of crops in Canada for control of weeds.

The minor use project for green onions grown on muck soil was sponsored by Agriculture and Agri-Food Canada, Pest Management Centre (AAFC-PMC) as a result of minor use priorities established by growers and extension personnel.

Prowl H2O herbicide is toxic to aquatic organisms and non-target terrestrial plants. Do not apply this product or allow drift to other crops or non-target areas. Do not contaminate off-target areas or aquatic habitats when spraying or when cleaning and rinsing spray equipment or containers.

Follow all precautions and detailed directions for use on the Prowl H2O herbicide label carefully.

For a copy of the new minor use label contact your local crop specialist, regional supply outlet or visit the PMRA label site http://www.hc-sc.gc.ca/cps-spc/pest/registrant-titulaire/tools-outils/label-etiq-eng.php .
Published in Weeds
April 17, 2017, Guelph, Ont – Health Canada’s Pest Management Regulatory Agency (PMRA) has completed a special review on Paraquat (Gramoxone Liquid Herbicide) and proposed a phase-out of the product. See part of the decision below:

[PMRA] recently conducted a Special Review of Paraquat and concluded that changes to the Gramoxone Liquid Herbicide with Wetting Agent, Reg. No. 8661   (i.e. “Gramoxone”) product formulation and packaging are required. As a result of this decision, a phase-out of the current product is being implemented.

As mandated by the PMRA, Syngenta will not be selling Gramoxone (in its current form) after March 31, 2017. The last date that retailers can sell this product is September 30, 2017.

Growers may continue to use the current formulation of Gramoxone during the 2017 and 2018 seasons. After December 31, 2018, this formulation of Gramoxone must not be used and must be properly disposed of. Please contact CleanFarms (1-877-622-4460) for information regarding the pesticide disposal program in your area.

Options to make this tool available to Canadian growers beyond December 31, 2018, are currently being considered and evaluated. We will update you in the future, as appropriate.

In order to continue to use Gramoxone for 2017 and 2018, there are additional stewardship requirements that must be met:
  • Gramoxone may only be sold to and used by individuals that hold an appropriate pesticide applicator certificate or license as recognized by the appropriate provincial/territorial pesticide regulatory agency.
  • See amended label for changes in PPE and first aid instructions.
  • Gramoxone may only be tank-mixed with products on the label.
  • Retailers must provide a copy of the Paraquat Stewardship Counter Card to the end-user (i.e. grower, applicator, etc.) at the time of sale.
These stewardship requirements can be found on the Gramoxone Product Page, short video and Powerpoint presentation.
Published in Weeds
April 10, 2017, Calgary, Alta – An exclusive new Canadian distribution agreement between bio-ferm and Nufarm Agriculture Inc. adds two biological fungicides to Nufarm’s horticultural line of crop protection solutions.

Blossom Protect and Botector are now available from Nufarm in Canada, as part of the company’s lineup of herbicides, fungicides and insecticides for Canadian horticultural growers.

“Biological fungicides make up an important and growing part of our fungicide portfolio,” says Maria Dombrowsky, horticultural specialist at Nufarm Agriculture Inc. “Blossom Protect and Botector are great complements to our existing products, and will allow Nufarm to continue to support growers and their IPM programs.”

Blossom Protect is a biological fungicide that provides protection for pome fruit against fire blight (Erwinia amylovora). Botector is a biological fungicide used to protect grapes from botrytis (Botrytis cinerea).

bio-ferm products contain a unique mode of action that hinders the development of resistance,” says Werner Fischer, managing director with bio-ferm. “Our products are suitable for conventional and organic production, and bring the additional benefit of being safe for humans, animals and beneficials. They are certified through Ecocert Canada.”

Blossom Protect and Botector are available exclusively through Nufarm Agriculture Inc., its distributors and retailer partners across Canada.
Published in Diseases
April 3, 2017, Guelph, Ont – Syngenta Canada recently launched Aprovia Top fungicide, a new tool for controlling foliar early blight and suppressing brown spot.

Early blight, which is caused by the Alternaria solani fungus, is found in most potato growing regions. Foliar symptoms include small, brown, irregular or circular-shaped lesions that form on the potato plant’s lower leaves later in the season. The disease prefers warm, dry conditions to develop, and can be more severe in plants that are stressed and weakened.

Brown spot, caused by the Alternaria alternata fungus, is closely related to early blight and is found wherever potatoes are grown. Unlike early blight, brown spot can occur at any point during the growing season, producing small, dark brown lesions on the leaf surface.

Aprovia Top fungicide combines two modes of action with preventative and early curative activity on these two key diseases. Difenoconazole (Group 3) is absorbed by the leaf and moves from one side of the leaf to the other to protect both surfaces against disease. Solatenol (Group 7 SDHI) binds tightly to the leaf’s waxy layer and is gradually absorbed into the leaf tissue to provide residual protection.

“After a strong start, a foliar application of Aprovia Top can be used to manage these key diseases and keep potato crops greener longer,” says Eric Phillips, fungicides and insecticides product lead with Syngenta Canada.

Aprovia Top is available now for use in 2017 production. In potatoes, one case will treat up to 40 acres.

At this time, maximum residue limits (MRLs) for Solatenol use on potatoes have been established for markets in Canada and the U.S. Growers should consult with their processor prior to use.

In addition to potatoes, Aprovia Top can be used to control scab and powdery mildew in apples. Aprovia Top also provides control of early blight, powdery mildew, and Septoria leaf spot in fruiting vegetables, as well as powdery mildew, Alternaria blight and leaf spot in cucurbit vegetables.

See the Aprovia Top label for a complete list of crops and diseases.

For more information about Aprovia Top fungicide, please visit Syngenta.ca or the Customer Interaction Centre at 1‑87‑SYNGENTA (1‑877‑964‑3682).
Published in Diseases
March 28, 2017, Calgary, Alta – Four new crops have been added to the Presidio fungicide label as the result of Pest Management Regulatory Agency (PMRA) minor use approvals.

Presidio is now approved for use on ginseng, tobacco, brassica leafy vegetables and greenhouse ornamentals for a variety of troublesome diseases. The PMRA has also approved Presidio for control of pink rot on potatoes.

“These Presidio label additions are really important news for Canadian growers that depend on minor use approvals to protect their high value crops,” says Maria Dombrowsky, horticultural specialist at Nufarm Agriculture Inc. “Now more growers can access Presidio as part of their integrated pest management (IPM) program with a unique class of chemistry for better resistance management.”

Presidio (Group 43) provides growers with preventive and some curative reach-back action against downy mildew and Phytophthora spp., including late blight, on a variety of crops. In addition to these new crops, Presidio is also registered for use on head, stem and root brassica, cucurbits, fruiting vegetables and leafy vegetables.

“Presidio offers a great new option for domestic potato growers managing pink rot,” says Dombrowsky. “Growers should check with their processors before using Presidio on potatoes, because maximum residue limits (MRLs) for potatoes have not been established in all export markets.”
Published in Diseases
Page 1 of 3

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Empire State Producers Expo
Tue Jan 16, 2018 @ 8:00AM - 05:00PM
2018 Scotia Hort Congress
Mon Jan 22, 2018 @ 8:00AM - 05:00PM
2018 Nova Scotia Fruit Growers Annual Meeting
Tue Jan 23, 2018 @ 8:00AM - 05:00PM