Specialty Research
November 27, 2017, Guelph, Ont – Collaboration between vegetable growers, a farm organization, and a grower co-operative is leading to improved plant health and more efficient vegetable production in the Holland Marsh.

The Bradford Co-op, the Fresh Vegetable Growers of Ontario and individual vegetable growers in the Holland Marsh are collaborating on a project with the University of Guelph to test innovative technologies that will make their Integrated Pest Management (IPM) programs for key crops like onions and carrots more efficient and cost effective.

“We work together with industry partners and growers to fund and collaborate on our IPM programs in the Marsh,” explains Matt Sheppard, Bradford Co-op general manager. “There is tremendous value in early detection and this project is helping us identify issues in real time so we can provide the correct advice and solutions to growers.”

Weekly photos are taken of the vegetable fields in the marsh using an octocopter drone. Lead researcher Mary Ruth McDonald and her team at the University of Guelph’s Muck Crops Research Station run the IPM program and use the images for early detection of diseases and insects so growers can take appropriate measures to protect their crop and prevent or minimize damage.

Downy mildew, which causes lower yields and decreased storability, is the most damaging disease for onions in the area; Stemphylium leaf blight is also a significant concern.

“The technology we are able to access through this project makes our crop scouting program more effective and lets growers be proactive instead of reactive when it comes to crop protection,” explains Sheppard. “It’s very quick for a grower to have a problem area identified early and then decide how to treat it correctly to keep the crop healthy.”

Using information generated from the aerial images to prevent or minimize problems means less and more targeted use of crop protection materials, resulting in immediate savings of $5,000 to $50,000 per grower depending on the crop and the size of the farm.

More importantly, though, use of the technology ultimately ensures growers can keep supplying the market with quality produce and consumers have access to locally grown vegetables.

The marsh’s unique soils mean growers in the area have to work together to find solutions for their crop challenges, says Sheppard, adding that funding from Growing Forward 2 has been instrumental in bringing the collaboration together.

“Muck soil like ours doesn’t exist in other areas so we have to be self-sufficient and proactive to find solutions,” he says. “The technology is expensive so it’s something we wouldn’t be able to initiate on our own, but the investment with GF2 has allowed us to access the funds to make it happen.”
Published in Research
Delta, BC, November 20, 2017 – Farmers know the importance of keeping the land, water and air healthy to sustain their farms from one generation to the next. They also know that a clean environment and a strong economy go hand-in-hand.

The federal government recently announced a $1.8 million investment with the University of British Columbia to determine carbon sequestration and GHG emissions, and develop beneficial management practices (BMPs) for increasing the efficiency of fertilizer use in blueberry, potato and forage crops.

“This project will provide new science-based knowledge on net GHG emissions by accurately measuring GHG emissions and developing mitigation technologies for blueberry, potato and forage crops in the Lower Fraser Valley,” said Dr. Rickey Yada, dean of the Faculty of Land and Food Systems at UBC. “The research team will use state-of-the-art instrumentation and automated measurement techniques to quantify annual GHG emissions. While the specific research objectives are targeted to fill regionally identified gaps in knowledge, they will be applicable more broadly to similar agricultural production systems across Canada and Global Research Alliance member countries.”

This project with the University of British Columbia is one of 20 new research projects supported by the $27 million Agricultural Greenhouse Gases Program (AGGP), a partnership with universities and conservation groups across Canada. The program supports research into greenhouse gas mitigation practices and technologies that can be adopted on the farm.
Published in Research
October 30, 2017, Ames, IA – Organic agriculture practices eschew many synthetic fertilizers and pesticides, putting pressure on crops that conventional farming circumvents. That means an organic farmer who doesn’t use herbicides, for instance, would value crop varieties better suited to withstand weeds.

Enter Thomas Lubbserstedt, a professor of agronomy at Iowa State University. Lubberstedt and a team of ISU researchers recently received a four-year, $1 million grant from the U.S. Department of Agriculture to advance organic corn varieties. By the end of the project, the team aims to have identified elite varieties that will improve the performance of corn under organic growing conditions.

“Our main goal is to figure out whether new genetic mechanisms can benefit organic field and sweet corn varieties,” Lubberstedt said. “We want to develop traits that can do well under organic conditions.”

Lubberstedt said the research could lead to organic corn with better resistance to disease, weeds pests and environmental stress.

Farmers who label their products as organic adhere to standards meant to restrict the use of synthetic inputs that include many fertilizers and pesticides in an effort to maintain environmental sustainability. Demand for organic products is growing as consumers become more concerned about how their food is produced and how it affects the environment, said Kathleen Delate, a professor of agronomy and member of the research team. Delate said the U.S. market for organic products reached $47 billion in 2016.

The ISU research team intends to address limitations imposed by organic practices by finding genetic mechanisms that lead to better-performing corn varieties that can still meet organic standards. Lubberstedt will focus on varieties that carry a genetic mechanism for spontaneous haploid genome doubling. This allows a corn plant to carry only the genes of its mother.

Researchers can use these haploids to create totally inbred genetic lines in two generations, whereas traditional plant breeding takes five or six generations to produce inbred lines, Lubberstedt said. These inbred lines are more reliable for evaluation in an experimental setting because they carry no genetic variation that could influence results. That makes it easier to identify lines with superior traits, he said.
Published in Research
October 23, 2017, Guelph Ont – Ontario’s cider industry is working on new ways to quench the growing thirst for locally-grown hard cider, from the ground up. In 2011, the Ontario Craft Cider Association (OCCA) formed with a mandate to develop and maintain a world-class cider industry in Ontario using local fruit and craft methods.

It was a lofty goal, considering none of the cider apple varieties were readily available to Ontario growers. But with hard cider leading the growth category at LCBO stores, the group saw an opportunity to grow the seven per cent market share Ontario cider currently has of this segment. And in the process, the effort would support locally-grown cider to strengthen this made-in-Ontario industry.

“Ontario growers have been producing local cider for years using fresh apple varieties and they make a good cider,” says Tom Wilson, owner/operator of Spirit Tree Estate Cidery in Caledon and OCCA chair. “But we know that European varieties grown specifically for the cider market contain a much better flavour profile and tannin content to make high-quality hard cider.”

One of OCCA’s first projects involved grassroots research to evaluate European cider apple cultivars under Ontario’s growing conditions to understand the agronomics of growing the varieties and evaluating the attributes of the resulting juice for cider quality.

“Our group is part of a three-phase project to build a bigger cider industry in Ontario,” says Wilson, who is a third-generation Ontario apple grower. “There is very limited information available for our members on how European cider varieties will perform in Ontario. We really need science-based information to help growers make informed choices about using cider apple cultivars that will create the type of cider the market is craving.”

The first phase of the project was to source the genetic material to grow some of the European cider apple cultivars. The second phase, supported in part by Growing Forward 2 (GF2) funding accessed through the Agricultural Adaptation Council (AAC) is where the grassroots, field research took place.

Five orchards around the province were chosen to plant 29 new cider apple cultivars to gather local performance data on how the trees grow and the attributes of the resulting juice.

While OCCA is learning the finer points of growing European cider cultivars, they also commissioned an economic impact study of the Ontario industry.

Building a stronger cider industry in Ontario will return greater economic activity for the 25 craft cider producers, and in the process deliver many spin-off contributions to the broader community.

“The latest economic impact study we commissioned in late 2016 identified a number of other benefits for our growing sector, including tourism, rural development, attracting new businesses, community events and contributing to employment and training opportunities in the areas where our members operate,” says Wilson.

OCCA’s commissioned report provides encouraging statistics about the contributions of the Ontario industry to the economy, and the results confirm a growing opportunity for Ontario growers and cider lovers. Ontario-grown cider contains all the elements of a great agri-food success. Consumers are ready and eager to support local, Ontario’s cider growers are making great strides with new cider apple varieties and hard cider is a beverage category that continues to exceed growth targets year after year.
Published in Fruit
October 12, 2017, Deschambault, Que – The Canadian government is prioritizing science and innovation and the competitiveness of the agriculture industry as a whole to create better business opportunities for producers and Canadians.

Funding was announced recently for two projects by the Centre de recherche en sciences animales de Deschambault (CRSAD), including a plan to increase the pollination efficiency of bees to achieve better yields in cranberry production.

Funding of $183,127 will enable the CRSAD to identify the best method of feeding bees with sucrose syrup and to test variations of that method to maximize the bees’ pollination efficiency in cranberry production. The outcomes of this project are designed to increase cranberry yields and decrease bee feeding costs.

“The CRSAD is very appreciative of the federal government’s strong support for its research activities,” said Jean-Paul Laforest, president of the CRSAD. “Canada holds an enviable position in the world for cranberry production, and bees are major allies of the industry. Our project will deliver positive outcomes for both cranberry production and the bees themselves.”

In 2016, the Quebec cranberry industry generated nearly $82 million in market receipts and over $30 million in exports.

 
Published in Research
August 30, 2017, California - The Public Strawberry Breeding Program at the University of California, Davis, and colleagues in California and Florida have received a $4.5 million grant from the National Institute of Food and Agriculture of the U.S. Department of Agriculture to improve the disease resistance and sustainable production of strawberries throughout the nation.

The collaborative grant is good news for strawberry farmers and consumers everywhere, according to Rick Tomlinson, president of the California Strawberry Commission. To signal its own support, the strawberry commission pledged an additional $1.8 million to the UC Davis program.

“An investment in the UC Davis strawberry breeding program is an investment in the future of strawberries,” Tomlinson said. “Thanks to their groundbreaking research and strong partnerships, Director Steve Knapp and his colleagues are developing improved strawberry varieties publicly available to farmers.”

Improving genetic resistance to disease

Strawberries constitute a $4.4 billion-dollar industry in the United States, and 94 percent of the nation’s strawberry fruit and nursery plants are grown in California and Florida.

Strawberries are especially vulnerable to soil-borne pathogens, which destroy plants and greatly reduce yield. Since the 1960s, strawberry growers have depended on fumigants like methyl bromide to treat soils before planting berries in an effort to control disease. But methyl bromide has been phased out by the Environmental Protection Agency and will no longer be available after 2017.

“Following the elimination of methyl bromide fumigation, strawberry growers are under greater economic pressures, and there is an urgent need for improved, disease-resistant strawberry varieties that will thrive without fumigation,” Knapp said.

Knapp will head a team of scientists from UC Davis, UC Santa Cruz, UC Riverside, the UC Division of Agriculture and Natural Resources, Cal Poly San Luis Obispo, and the University of Florida.

Together, researchers will identify and manage pathogen threats, mine elite and wild genetic resources to find natural sources of resistance to pathogens, and accelerate the development of public varieties resistant to a broad spectrum of disease and other pests.

“Strawberry growers are faced with the need to deliver high-quality fruit to consumers year-round, while protecting the environment, fostering economic growth in their communities and coping with profound changes in production practices,” Knapp said. “We look forward to collaborating with our industry partners through research, agricultural extension and education to help them reach those goals.”

UC Davis Public Strawberry Breeding Program

During six decades, the UC Davis Public Strawberry Breeding Program has developed more than 30 patented varieties, made strawberries a year-round crop in California and boosted strawberry yield from just 6 tons per acre in the 1950s to 30 tons per acre today.

Knapp took over directorship of the program in 2015. He and his team are working to develop short-day and day-neutral strawberry varieties; studying the genetics of disease-resistance, fruit quality and photoperiod response; and applying genomic techniques to make traditional strawberry breeding more efficient. They have 10 public varieties in the pipeline and plan to release one or two new strawberry varieties later this year.

Initiative collaborators

The grant is funded by USDA’s Specialty Crop Research Initiative. Collaborators from UC Davis include agricultural economist Rachael Goodhue, plant pathologist Thomas Gordon, and plant scientists Julia Harshman and Thomas Poorten.

Other key collaborators are Oleg Daugovish with UC Agricultural and Natural Resources; Alexander Putman at UC Riverside; Julie Guthman at UC Santa Cruz; Gerald Holmes and Kelly Ivors, both at Cal Poly; and Seonghee Lee, Natália Peres and Vance Whitaker, all of the University of Florida.
Published in Research
August 29, 2017, Vineland, Ont. – Farmers interested in adding a new crop to their production line-up may want to look at okra as an opportunity.

That’s according to researchers at Vineland Research and Innovation Centre (Vineland) who have been working with the crop for the past five years and have some very promising results from two years of field trials with three okra varieties.

“We know okra can be grown commercially in southern Ontario and that yields of 20,000 kg per hectare are possible,” said Vineland research scientist Dr. Viliam Zvalo.

Canada imported over six million kilograms of okra in 2015 – an increase of 43 per cent since 2011 – so the market demand for this new crop, popular especially in South and Southeast Asian cuisine, is there.

Zvalo is particularly excited about three additional varieties Vineland has been able to source from East West Seeds from Thailand. The company is a key player in the okra seed market in countries like India, the Philippines, Malaysia and Thailand where much of the world’s okra is grown.

“We planted some of these varieties in June last year and were amazed by the yield potential,” he said. “I believe they may outperform the varieties we’ve been using so far and we are quite optimistic they’ll do very well here.”

Okra grows well in Canada’s hot summers but less is known about its performance in cooler, wet weather. However, Zvalo believes these new Asian varieties, which are developed for the cooler monsoon season, should perform well in Canada. Also, one variety is slower to mature than others, which means it needs to be harvested only every two or three days.

“Normally okra has to be picked daily to keep it from over-ripening and becoming woody, so this would give growers a bit of a buffer at harvest time,” he said.

Retail support for the new crop has been strong with prices for growers averaging $2.50 – $2.60 per pound. The key to getting into the okra business, though, is knowing the market, believes Zvalo.

“Big retailers are very interested in locally-grown okra, but are unlikely to deal with growers who only grow half an acre,” he said. “And if you’re harvesting and shipping daily, you need to be reasonably close to the market to get the crop there on time and be cost-competitive.”

For those interested in experimenting with okra, Vineland will provide a small quantity of seeds per variety as well as technical assistance related to growing the crop. This lets growers see first-hand how the varieties perform in their particular climate and soil.

According to Zvalo, the crop will grow reasonably well in areas of 2700 – 3300 crop heat units and growers in Ontario, Quebec, British Columbia and Manitoba are trialing all six of the varieties this year.

Vineland has been conducting okra research on optimal plant spacing, fertilization, use of covers in early spring as well as the impact on yield potential of direct seeding versus transplanting. More information is at http://vinelandresearch.com/program/feeding-diversity-bringing-world-crops-market.

“I think the okra story is definitely more promising today than it was just a few years ago,” Zvalo said.

Vineland’s okra research is funded in part by Growing Forward 2, a federal-provincial-territorial initiative, through the AgriInnovation Program.
Published in Vegetables
August 16, 2017, Ottawa, Ont. - Canadian fruit growers need the best varieties of plants to be successful. In the case of Canadian strawberry growers, they grow the best varieties of plants, which foreign buyers demand. The import and export of fruit plants, however, must go through the Canadian Food Inspection Agency (CFIA) to test for potentially devastating plant viruses. Currently, this testing and quarantine process takes an average of three years to complete, significantly hampering the speed of trade.

Today, the Honourable Lawrence MacAulay, Minister of Agriculture and Agri-Food, announced that the CFIA will lead two projects worth $500,000 that use new DNA-based technologies to reduce the quarantine testing time, helping to boost trade and economic competitiveness in the $240 million Canadian fruit tree industry.

"Together with provincial partners and industry, our government is making the investments in innovative science that enables agriculture to be a leading growth sector of Canada's economy. Together we can help meet the world's growing demand for high-quality, sustainable food and help grow our middle class," Minister MacAulay, said. 

The first project will dramatically shorten the testing period of seeds, cuttings and bulbs imported into Canada to grow new varieties of plants. With this funding, scientists will use DNA technology to test for all viruses associated with imported plants to get an early indication of any plant diseases present. This approach could reduce the quarantine testing time by up to two and a half years.

The second project streamlines the testing of strawberry plants. Traditionally, multiple tests for viruses are required before exporting strawberry plants to foreign markets. This project will test for multiple viruses in one single test, dramatically reducing the time and cost to get plants to market.

Funding for these projects is provided through a partnership between the CFIA, Genome British Columbia, Summerland Varieties Corporation, Phyto Diagnostics, the British Columbia Cherry Association, and Vineland Research and Innovations Centre.

"Canadian import/export markets will be stronger and more competitive because of these genomics-based tools. Early detection of pathogens and viruses is a vital outcome of genomics and it is being applied across many key economic sectors." Dr. Catalina Lopez-Correa, Chief Scientific Officer and Vice President, Genome British Columbia said. 
Published in Fruit
August 2, 2017, Ottawa, Ont. - Domestic subsidies in many countries encourage production increases that result in considerable surpluses and lower prices on global markets, according to a new study released today by the Canadian Agri-Food Policy Institute (CAPI).

The study also found these production increases fuel highly unsustainable production practices and the misallocation of natural resources.

The comprehensive study, Understanding Agricultural Support, was prepared by Al Mussell, Douglas Hedley, Kamal Karunagoda, and Brenda Dyack of Agri-Food Economic Systems, with support from the Canadian Federation of Agriculture and Ontario Ministry of Agriculture, Food and Rural Affairs. The report seeks a better understanding of the impacts of domestic income support programs in key markets and competitors on the competitiveness of Canada's agriculture and agri-food sector.
Published in Research
August 2, 2018, Guelph Ont. – Reducing food waste is not just the right thing to do; it’s also a way to improve business efficiency and profitability.

That’s the outcome of a food waste reduction project spearheaded by the Ontario Produce Marketing Association (OPMA) with funding provided by Growing Forward 2.

OPMA teamed up with Value Chain Management International (VCMI) to develop a workbook, prepare several case studies, and roll out a series of workshops to help OPMA members wrap their heads around how they can reduce waste in their businesses while making more money in the process.

“This is to identify opportunities for improvement in the value chain; if you improve process, you automatically reduce waste in areas like labour, energy, product, packaging and transportation,” project lead Martin Gooch told participants in the Agricultural Adaptation Council’s summer tour on June 14. “This will position the Ontario produce industry as a leader in reducing food waste, but it’s also a business opportunity for the entire value chain.”

The first Ontario industry case study was recently released, with three more nearing completion. The case study with a progressive Ontario potato supplier, EarthFresh Foods, clearly shows the business opportunity in addressing food waste: a 29 per cent increase in grade-out of potatoes results in a 74 per cent increase in producer margin.

Most of the produce loss can be directly attributed to production practices, storage and handling, but addressing the problem requires a slight shift in thinking for farmers.

“Farmers often look at what their production per acre is, but don’t connect that with how much is actually being marketed and that’s where they are paid,” he said. “If you can prevent that 29 per cent loss of product, that’s an overall $17,000 increase in return on a single trailer load of potatoes. Businesses also benefit from incurring lower costs.”

To date, close to 100 people have participated in the waste reduction workshops developed by VCMI. The accompanying workbook uses a whole value chain perspective, and was designed to be an easy to use tool for businesses small and large with 10 easy steps to follow.

“You don’t need to have a PhD in math or be a statistical genius to improve your business,” Gooch said. “It’s about identifying where the opportunities are, what the causes are, and how do we address those causes in a constructive way.”

Overall, participants come away from the workshop with solutions they can use to improve performance in their businesses and no longer simply accept waste and “shrink” as part of doing business. Media interest in the initiative has been strong with global coverage, and other sectors, like meat processing, are making inquiries about applicability of the program to their industries.

More information is available at www.theopma.ca.

This project was funded in part through Growing Forward 2 (GF2), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario.
Published in Research
July 27, 2017, Vineland, Ont – It’s been 10 years since a new horticultural research facility in Niagara Region was launched as the Vineland Research and Innovation Centre (Vineland).

Since then, Vineland has been turning heads across Canada and internationally with its needs-based innovations. The organization reflects the entire horticulture value chain from farmers to consumers, and they’re not afraid to take big steps to help the industry solve problems.

“We started by understanding what needed to be done and how we needed to work to make a difference, which is real results with real impact from acres in the field to shelf space in the store,” says Vineland’s CEO, Dr. Jim Brandle.

Addressing the labour intensive nature of horticultural production was a need identified early on. Today, machines designed in Vineland’s robotics program and built in Ontario are coming into use in fruit and vegetable greenhouses, which Brandle says will go a long way in helping to keep growers competitive, as well as boost the local manufacturing and automation sector.
Sweet potatoes, okra and Asian eggplant are offering new market opportunities for growers and consumers eager to eat more locally produced food.

And Vineland’s rose breeding program made a big splash earlier this year when its Canadian Shield rose – a trademarked low-maintenance and winter hardy variety bred in Canada – was named Flower of the Year at Canada Blooms.

Another significant milestone was the construction of the largest, most modern horticultural research greenhouse in North America with commercial-scale height and growing rooms dedicated to horticulture, which opened in 2016 and was built around the needs of Canada’s greenhouse vegetable and flower growers.“Today, we’re commercializing innovations, from the Canadian Shield rose to new apple and pear varieties,” Brandle says. “We are having the kind of impact that we sought in those early days.”

Natural ways to control greenhouse pests – called biocontrols – are making a real difference to flower growers and a new technology that can identify genetic variants for traits in all plants has just been spun-off into a for-profit company.

“We’re creating a reputation and that alone is an achievement because we’re the new kid on the block,” he says. “We have a ton of good people with and around the organization and on our board who are making this happen.”Vineland is an important partner to the horticulture industry, according to Jan VanderHout, a greenhouse vegetable grower and Chair of the Ontario Fruit and Vegetable Growers’ Association.

“They are very good at asking us what we want and taking a whole value chain approach to research and innovation,” VanderHout says. “You need the right facilities and expertise and Vineland fills that need to the benefit of the industry as a whole.”

Looking to the future, both Brandle and VanderHout predict that cap and trade pressure and high energy costs will result in more work around energy use and carbon footprint reduction.And Vineland’s consumer-focused approaches will continue to drive new innovation, from high flavour greenhouse tomatoes to Ontario-grown apple varieties.

“We will further lever consumer-driven plant breeding and work with the intent around pleasing consumers and trying to understand what they want so we can build that into our selection criteria,” Brandle says.
Published in Profiles
July 25, 2017 – Ottawa, Ont. - A Food Policy for Canada will set a long-term vision for the health, environmental, social, and economic goals related to food, while identifying actions we can take in the short-term.

We have reached out to Canadians to help shape the policy because we know that by working together, we can build a food policy that is a shared vision to address food-related opportunities and challenges in Canada.

A strong response from across the country has prompted Agriculture and Agri-Food Minister, Lawrence MacAulay, to encourage even more citizens to have their say.

With over 22,000 Canadians having completed the online survey launched on May 29, the comment period has been extended to August 31, 2017, to allow even more Canadians to share their views on A Food Policy for Canada.

The online survey is one of a number of consultation activities planned to engage with Canadians on this issue.

The Government of Canada is also encouraging community leaders and organizations to continue having food policy discussions in their own regions across the country. A toolkit is now available online that can help organizers host discussions and gather feedback on what matters most when it comes to food policy.

Following a successful food policy summit held in Ottawa in June, the Government of Canada will be holding regional engagement sessions across Canada throughout August and September. Stakeholders, Indigenous groups, experts, and key policy makers will be invited to attend these sessions and share their views on the development of A Food Policy for Canada.

A Food Policy for Canada, which will be the first-of-its-kind for Canada, will help address food issues and pursue opportunities in areas related to:

· increasing access to affordable food;
· improving health and food safety;
· conserving our soil, water, and air; and
· growing more high-quality food.
Published in Federal
July 19, 2017 - In 2016, Health Canada’s Pest Management Regulation Agency (PMRA) completed a re-evaluation of carbaryl, a common chemical thinning regime for Canadian apple producers.

The re-evaluation led to some changes and restrictions on the product label. This included eliminating its use in residential areas plus as an insecticide on some fruit and vegetable crops.

Apple thinning has remained on the label but at reduced rates:
  • Maximum seasonal rate of 1.5 kg a.i./ha and an REI of 14 days for hand thinning [high-density trellis production such as spindle or super spindle]
  • Maximum seasonal rate of 1.0 kg a.i./ha and an REI of 17 days for hand thinning [dwarf, semi-dwarf and full-sized trees]
As a result, research is underway to discover a new thinning regime for Canadian apple producers.

Researchers from Cornell Cooperative, CCE Lake Ontario Fruit Program educator and the Lamont Fruit farm conducted a three-year mechanical thinning trial. Watch above for more!
Published in Chemicals
July 18, 2017, Ontario - New storage bins are currently being tested that could extend the shelf life of fresh Ontario produce.

Dr. Jennifer DeEll, frest market quality program lead with Ontario Ministry of Agriculture, Food and Rural Affairs, is currently leading a two-year project to test the effectiveness of the Janny MT modified atmosphere storage bins on Ontario fruits and vegetable crops.

Check out the video for more!
Published in Storage
June 27, 2017 – Why do the best fruits seem to have the shortest shelf life? It’s a challenge that plagues fresh fruit markets around the world, and has real implications for consumers and fruit growers.

Now, new research from University of Guelph has led to the development of a product that extends the shelf life of fresh fruits by days and even weeks, and it is showing promise in food insecure regions around the world.

“In people and in fruit, skin shrinks with age — it’s part of the life cycle, as the membranes start losing their tightness,” said Jay Subramanian, Professor of Tree Fruit Breeding and Biotechnology at the University of Guelph, who works from the Vineland research station. “Now we know the enzymes responsible for that process can be slowed.”

The secret, according to Subramanian, is in hexanal, a compound that is naturally produced by every plant in the world. His lab has developed a formulation that includes a higher concentration of hexanal to keep fruit fresh for longer.

Subramanian’s research team began experimenting with applying their formula to sweet cherry and peaches in the Niagara region. They found they were able to extend the shelf life of both fruits and spraying the formula directly on the plant prior to harvest worked as well as using it as a dip for newly harvested fruit.

“Even one day makes a huge difference for some crops,” Subramanian said. “In other fruits like mango or banana you can extend it much longer.”Once the formula is available on the market, Subramanian sees applications on fruit farms across Ontario, including U-pick operations, where an extended season would be beneficial. But the opportunities could also make a significant impact on fruit markets around the world.

Subramanian’s research team was one of only 19 projects worldwide awarded an exclusive research grant from the Canadian International Food Security Research Fund, a program governed by the International Development Research Centre and funded through Global Affairs Canada.

The team used the funding to collaborate with colleagues in India and Sri Lanka on mango and banana production. Mangos are one of the top five most-produced fruits in the world, with 80 per cent of the production coming from South Asia. After more than three years, researchers learned that by spraying the formula on mangos before harvest, they were able to delay ripening by up to three weeks.

“A farmer can spray half of his farm with this formulation and harvest it two or three weeks after the first part of the crop has gone to market,” Subramanian said. “It stretches out the season, the farmer doesn’t need to panic and sell all of his fruit at once and a glut is avoided. It has a beautiful trickle-down effect because the farmer has more leverage, and the consumer gets good, fresh fruit for a longer period.”

The team is at work in the second phase of the project applying similar principles to banana crops in African and Caribbean countries, and hopes to also tackle papaya, citrus and other fruits.

The formula has been licensed to a company that is completing regulatory applications and is expected to reach the commercial market within three years.
Published in Research
June 16, 2017, Boise, ID - In Idaho, potatoes are both a humble stereotype and a half-billion dollar crop.

According to the Idaho Farm Bureau Federation, every spring farmers plant more than 320,000 acres of potatoes valued at between $550-$700 million. Yet unbeknownst to most consumers, roughly 30 percent of the potatoes harvested spoil before they reach a grocery store shelf.

Boise State University researchers Harish Subbaraman, David Estrada and Yantian Hou hope to change that.

In a recently awarded one-year $413,681 Idaho Global Entrepreneurial Mission (IGEM) grant, Boise State is collaborating with Idaho State University and industry partners Isaacs Hydropermutation Technologies, Inc (IHT) and Emerson to develop a wireless sensor network that would be able to detect temperature, humidity levels, and carbon dioxide and ammonia levels in real time, to help with early detection of rot.

The cloud-enabled sensor system will feature three-dimensional hot spot visualization and help predict on-coming rot or deteriorating quality of stored potatoes. This will allow owners to use the real-time sensor data, along with a miniature air scrubber system IHT is developing, to respond to potential problems quickly, as they develop.

“The current problem is, there are no sensors that can do early detection of rot,” said Subbaraman, an assistant professor of electrical engineering. “But if you can identify rot at an early stage, you can prevent crop loss on a large scale.”

“Rot spreads on contact. The way the system works now is, a farmer walks into their facility, smells rotten potatoes and that’s it,” added Estrada, an assistant professor of materials science. “But our sensors can detect parts per million, or even parts per billion, and can tell us in exactly which bin the sensor is detecting rot. That way, farmers can go out, pull out a few rotten potatoes and save the rest of the batch.”

Estrada explained that the cost of printing sensors could be as low as a few dollars apiece. Not only would the monitoring system hopefully prevent waste, it could help preserve the quality of potatoes in the facility.

Subbaraman and Estrada plan to have their sensors tested in a facility by the end of their year-long grant cycle by working with industry partner Emerson PakSense. But Estrada points out that this project has been three years in the making and will continue long past the IGEM grant.

“The College of Business and Economics and the College of Engineering have been invested in building a printed electronics community in Idaho for several years,” Estrada said. “Most recently, our Advanced Nanomaterials and Manufacturing Laboratory has partnered with the NASA Ames Research Center, Air Force Research Labs, and American Semiconductor to develop flexible electronics technologies.”

Subbaraman noted, “We’re also very interested in partnering with others interested in this technology. It’s a great economic impact for the state and we see that growing in the future.”

Not only would the cloud-enabled wireless sensory system save Idaho farmers millions in revenue, it could have a billion-dollar impact on the national potato industry and help address larger socio-economic issues such as food scarcity in parts of the world.

“The benefit of this system is it’s extremely low cost,” Subbaraman added. “This dual detection and air scrubbing system could later be extended to other stored crops as well.”
Published in Research
June 9, 2017, Winnipeg, Man. - Researchers with Agriculture and Agri-Food Canada are setting the stage for what may be a new entry into the Canadian-grown "super" food market.

Lingonberries are already popular in Scandinavian cuisine where they are used in sauces for chicken and pork, as well as in muffins and breads.

Small, tart and slightly sweet, they are native to British Columbia, Manitoba, and Atlantic Canada and have the potential to become a valuable crop for Canadian growers.

The lingonberry is closely related to the blueberry and cranberry, which are also high in anti-oxidants. The benefits of lingonberries and their juice may go even further: preliminary studies in Sweden suggest there is potential to help prevent weight gain, and to help prevent high sugar and cholesterol levels.

But there’s more! New research from Dr. Chris Siow, Research Scientist with Agriculture and Agri-Food Canada and principal investigator with the Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), located at St. Boniface Hospital, is showing that lingonberries may also contribute to healthy kidneys.

Here’s how: during kidney surgery, including transplants, kidneys experience low oxygen, and when oxygen is returned to the organ there can be inflammation and damage. In tests using lab rats Dr. Siow’s research team fed one millilitre (the human-equivalent of one cup) of Manitoba lingonberry juice daily for three weeks to one group and none to another prior to kidney surgery.

The rats that had consumed lingonberry juice had improved kidney function, reduced kidney stress and reduced inflammation following the operation in comparison to those that had none. These results also showed that as the concentration of lingonberry increased, the protective effect also increased.

“Overall, the research data obtained from these studies is very promising and we are encouraged that we may have a commodity that has positive impacts on human health,” said Dr. Siow. “We plan to continue with our studies to validate the early results and look for additional benefits the berry may provide.”

Meanwhile across the country, research on the lingonberry plant itself is taking place. Work with lingonberry production and germplasm enhancement is being done at AAFC’s St. John’s Research and Development Centre (NL) under the leadership of Dr. Samir Debnath. He has been working in collaboration with Dr. Siow.

“Lingonberry will be a potential health-promoting berry crop for Canada” said Dr. Debnath who developed a number of promising hybrids between European and Canadian lingonberries.

Dr. Debnath is also working in collaboration with the Newfoundland and Labrador provincial government and with Newfoundland and Labrador (NL) growers for growing lingonberry hybrids under field conditions.

Drs. Debnath and Siow not only believe that this berry will be beneficial to consumers – especially when studies like his continue to produce positive results – but that lingonberries will also be of interest to growers as they may provide new business opportunities.

Key discoveries:
  • Lingonberries contain more anthocyanins, the pigments that give them their red colour, per gram than most commonly consumed berries (i.e., blueberries, cranberries). It is these compounds that may provide health benefits.
  • Lingonberries are rich in vitamins and minerals.
  • Lingonberries can be found growing wild in the northern regions of Canada. Research shows that the lingonberries grown in Northern Manitoba contain the highest levels of antioxidants.
Published in Research
May 24, 2017 - The International Potato Center (ICP) researchers have been working with NASA to understand how potatoes could be cultivated on Mars through a series of experiments on Earth.

We spoke to CIP sub programme science leader for integrated crop and system research, Jan Kreuze, and NASA Ames geobiologist and researcher, Julio Valdivia–Silva, about their otherworldly project.

Valdivia–Silva says the partnership between CIP and NASA came about through the organisations' mutual interest in growing crops under difficult conditions.

"The initiative came from CIP, with the intention of solving problems around cropping in desert areas as a result of climate change and desertification," Valdivia–Silva explains. "Meanwhile, NASA was interested in the project for the need to grow crops in future human colonies outside Earth."

But why potatoes? Kreuze says this is down to the minimal amount of water potatoes require per kilogram grown compared to other major cereals, as well as their ability to withstand a wide range of environmental conditions, their nutritional value, and their fast growing, high yield nature. READ MORE
Published in Research
May 24, 2017 Westminster, CO- A recent survey conducted by the Weed Science Society of America (WSSA) ranks Palmer amaranth as the most troublesome and difficult to control weed in 12 categories of broadleaf crops, fruits and vegetables, while common lambsquarters ranks as the weed most commonly found.

Almost 200 weed scientists across the U.S. and Canada participated in the 2016 survey, the second conducted by WSSA.

A 2015 baseline survey explored the most common and troublesome weeds in 26 different crops and noncrop areas.

The current survey ranks the following weeds as the most troublesome or the most common among broadleaf crops, fruits and vegetables:

TOP 10 WEEDS IN BROADLEAF CROPS, FRUITS & VEGETABLES

Most Troublesome
  1. Palmer amaranth
  2. Common lambsquarters
  3. Horseweed (marestail)
  4. Morningglory (ivyleaf, pitted, tall)
  5. Waterhemp (tall, common)
  6. Nutsedge (yellow, purple)
  7. Kochia
  8. Common ragweed
  9. Giant ragweed
  10. Nightshade (eastern black, hairy)
Most Common
  1. Common lambsquarters
  2. Foxtail (giant, green, yellow)
  3. Morningglory (ivyleaf, pitted, tall)
  4. Palmer amaranth
  5. Redroot pigweed
  6. Waterhemp (tall, common)
  7. Horseweed (marestail)
  8. Common ragweed
  9. Barnyardgrass
  10. Velvetleaf
Six weed species appeared on both the “most troublesome” and “most common” lists, including Palmer amaranth, common lambsquarters, horseweed, morningglory, waterhemp and common ragweed.

“Weed scientists have confirmed multiple cases of herbicide resistance in all six of these weed species, except for the morningglories where there is suspected resistance to glyphosate,” says Lee Van Wychen, Ph.D., science policy director for WSSA. “While each of these species has evolved traits that make them widespread and tough competitors in broadleaf crops like soybeans and cotton, there is no question that their difficulty to control with herbicides has pushed them to the top of the list in this survey.”

WSSA also sorted the survey data to produce the following crop-specific results, shown below by crop, most troublesome weed and most common weed, respectively:
  • Alfalfa: Canada thistle; dandelion
  • Canola: kochia; wild oat
  • Cotton: Palmer amaranth; morningglory (ivyleaf, pitted, tall)
  • Fruits & nuts: field bindweed; horseweed (marestail)
  • Peanuts: nutsedge (yellow, purple); Palmer amaranth
  • Pulse crops: common lambsquarters; common lambsquarters
  • Soybeans: horseweed, waterhemp (tall, common); waterhemp (tall, common)
  • Sugar beets: common lambsquarters; common lambsquarters
  • Vegetables: nutsedge (yellow, purple); common lambsquarters
Although listed as the most troublesome weed in cotton only, Palmer amaranth was ranked first in the overall survey based on the number of respondents who cited it as a problem.

Common lambsquarters is widely distributed across the northern half of the United States and southern Canada. It is not surprising that it ranked as the most common weed in sugar beets, vegetable crops and pulse crops, such as dry edible beans, lentils and chickpeas.

WSSA plans to conduct habitat-specific weed surveys annually. The 2017 survey will focus on weeds in grass crops, pasture and turf, while the 2018 survey will focus on weeds in aquatic environments, natural areas and other noncrop settings.

The 2016 survey data is posted online at http://wssa.net/wssa/weed/surveys.

For more information specific to herbicide-resistant weeds, see the International Survey of Herbicide Resistant Weeds, available at http://weedscience.com.
Published in Research
May 23, 2017, New Brunswick - Agriculture and Agri-Food Canada entomologist Dr. Chandra Moffat is on the lookout for evidence of an agricultural pest that is causing significant damage to crops in the U.S. and parts of Canada.

The Brown Marmorated Stink Bug is an invasive insect that damages various fruit and vegetable crops including apples, tomatoes, beans and many others.

While the insect hasn’t been detected in the province, scientists are expecting its arrival in the next few years.

To get ahead of the game, Dr. Moffat is setting traps in key locations across the province to try to determine if the pest has made its way to N.B.

Originally from Asia, the Brown Marmorated Stink Bug was first detected in the U.S. in 2001.

Since then, the pest has established populations in many U.S. states as well as B.C., Ontario and in 2016 it was discovered in Quebec.

While there are other stink bugs native to this region, the Brown Marmorated Stink Bug has distinct markings that give it away.

These pests have two obvious white bands on otherwise dark antennae, inward-pointing white triangles between dark markings along the edge of the abdomen, and a smooth edge along the pronotum or "shoulders".

They are mottled brown-grey dorsally and a have a pale underside. Legs have faint white bands.

The Brown Marmorated Stink Bug can be found in homes or storage sheds over the winter and start making their way outside in the spring. Moffat is asking New Brunswickers to be our citizen scientists this season and be on the lookout for this pest.

Campers and travellers spending time in the U.S. or central and western Canada this summer are asked to check their luggage and trailers for signs of the pest before returning to N.B.

If you think you’ve found a Brown Marmorated Stink Bug, please contact Dr. Chandra Moffat at ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it ) to make arrangements for identification.
Published in Research
Page 1 of 2

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Empire State Producers Expo
Tue Jan 16, 2018 @ 8:00AM - 05:00PM
2018 Scotia Hort Congress
Mon Jan 22, 2018 @ 8:00AM - 05:00PM
2018 Nova Scotia Fruit Growers Annual Meeting
Tue Jan 23, 2018 @ 8:00AM - 05:00PM