Specialty Research
St. Catherines, Ont. – The glass is half full when it comes to grape and wine research in Ontario. And it’s only getting fuller thanks to the efforts of Brock University’s Cool Climate Oenology and Viticulture Institute (CCOVI).

The research institute, established in 1996 in partnership with the Grape Growers of Ontario, the Wine Council of Ontario, and the Winery and Grower Alliance of Ontario, has tackled significant vineyard and winemaking issues, elevating local tipple to world-class status in the process.

It’s done so by taking on the multi-coloured Asian lady beetle, which can taint an entire vintage, and kept many bottles of wine tasting their finest in the process. It has 20 years of research dedicated to icewine production and authentication to ensure integrity for Canadian versions of the sweet nectar.

The effects of climate change on grape growing, sparkling wine production, and resveratrol and the Ontario wine industry also get serious research attention at CCOVI to the benefit of Ontario vintners and grape growers.

Most recently, CCOVI received nearly $2 million in funding from the Canada Foundation for Innovation and the Ontario Research Fund to build its one-of-a-kind Augmented Reality, Virtual Reality and Sensory Reality Consumer Laboratory. It will be known as R3CL and will be the world’s first mediated-reality wine laboratory, combining sights, smells and sounds to help researchers study the science of consumer choice in the wine industry.

CCOVI’s research is so vital to the industry that an economic impact study pegged its contribution to the Ontario economy at $91 million annually. It also creates the equivalent of more than 300 jobs a year thanks to its research outputs.

Some of the most significant impacts can be credited to its cold hardiness research and flagship VineAlert program, which warns grape growers about cold weather events so they can use their wind machines and other techniques more effectively to protect their vines from cold damage.

VineAlert spared more than $7 million in crop losses in 2014-15, which converted to nearly $74 million in wine sales.

But CCOVI and its team of scientists, led by director Debbie Inglis, aren’t stopping there. Their work is positioning CCOVI to be the Canadian centre of excellence for cool climate viticulture, oenology, wine business, policy and culture with a mandate to advance the industry nationally, not just locally.

CCOVI’s intrepid VineAlert program is being rolled out across Canada thanks to partnerships in Summerland, B.C., and Kemptville, N.S. Equipment and testing methods to determine cold hardiness are being tried on for size in both provinces right now.

“We’re hoping within the next year that we’re going to be able to make the VineAlert program national,” Inglis said.

The Fizz Club, which provides professional development, and shares knowledge and research among sparkling wine producers also went national in 2017. And CCOVI is developing a domestic, certified “clean plant” program for grapevines to supply the industry with plant material that’s free of disease.

“The larger impact has been in Ontario but we’re starting to branch out and see that impact across Canada,” Inglis said.
Published in Research
Ottawa, Ont. – The Canadian Agricultural Human Resource Council (CAHRC) has commenced a new project to enhance and update CAHRC’s agricultural supply/demand forecasting system.

The new information will provide updated national, provincial and commodity-specific labour market information that will clarify the state of the Canadian agricultural labour market and ways to minimize labour shortages in the future.

The two-year project will augment CAHRC’s previously released Labour Market Information (LMI) research that determined annual farm cash receipt losses to Canadian producers due to job vacancies at $1.5 B or three per cent of the industry’s total value in sales.

Based on 2014 figures, the LMI research estimated the current gap between labour demand and the domestic workforce as 59,000 jobs. That means primary agriculture had the highest industry job vacancy rate of all sectors at seven per cent.

Projections indicated that by 2025, the Canadian agri-workforce could be short workers for 114,000 jobs. The new research will update the forecast through to 2029.

“Understanding the evolving needs of agricultural labour challenges across the country and across commodities will facilitate the development of informed and relevant initiatives by industry stakeholders to ensure the future viability and growth of Canadian farms,” explains Portia MacDonald-Dewhirst, executive director of CAHRC.

CAHRC’s research will examine the specific labour needs of all aspects of on-farm production including: apiculture; aquaculture; beef; dairy; field fruit and vegetables; greenhouse, nursery and floriculture; grains and oilseeds; poultry and eggs; sheep and goats; swine; and the tree fruit and vine industries.

The new research will update the demand and supply model of the agricultural workforce with information about projected employment growth, seasonality of labour demand, and labour supply inflows and outflows including immigration, inter-sector mobility, and retirements, as well as temporary foreign workers. It will also conduct secondary investigations and analyses focused on the participation of women and indigenous people in the agricultural workforce.

“The labour gap needs to be filled,” says Debra Hauer, manager of CAHRC’s AgriLMI Program. “To achieve this, we will examine groups that are currently under-represented in the agricultural workforce, particularly women and indigenous people, as well as continue to encourage new Canadians to make a career in agriculture. Removing barriers will improve access to job opportunities and help address labour shortages by increasing the agricultural labour pool.”

The new research findings will be unveiled at a national AgriWorkforce Summit for employers, employment serving agencies, government, education, and industry associations. Additionally, a series of presentations will be delivered to industry associations detailing national, provincial or commodity-specific labour market information.

Funded in part by the Government of Canada’s Sectoral Initiatives Program, the Council is collaborating with federal and provincial government departments, leading agriculture organizations and agricultural colleges and training providers to ensure that the needs of this industry research are fully understood and addressed.
Published in Research
Almost everyone agrees: The Red Delicious is a crime against the apple. The fruit makes for a joyless snack, despite the false promise of its name, with a bitter skin that gives way to crumbling, mealy flesh. Maybe that’s why the New York Apple Association suggests people use their Red Delicious in holiday wreaths and centerpieces.

Though it’s no longer the most popular apple in America—since its heyday in the 1980s, it’s been overtaken by newer, tastier varieties—the Delicious remains the most heavily produced apple in the United States. Which means that, even though we’ve long since caught on, you can still find the red scourge everywhere.

This raises some important questions. Why do we keep growing 2.7 billion pounds of Red Delicious apples every year? And are growers still excited by the Delicious or are they stuck between a declining market and an orchard they can’t afford to tear up? For the full story, CLICK HERE.
Published in Fruit
For the first time, scientists have improved how a crop uses water by 25 per cent without compromising yield by altering the expression of one gene that is found in all plants, as reported in Nature Communications.

The international team increased the levels of a photosynthetic protein (PsbS) to conserve water by tricking plants into partially closing their stomata, the microscopic pores in the leaf that allow water to escape. Stomata are the gatekeepers to plants: When open, carbon dioxide enters the plant to fuel photosynthesis, but water is allowed to escape through the process of transpiration. | READ MORE
Published in Research
Ontario consumers are thirsty for more hard apple cider, and the province’s apple sector is poised to deliver. But first, researchers are profiling consumer preference to be sure the industry serves up cider that hits the spot.

The project developed in response to research needs identified in the 2016 Cider Research and Innovation Strategy is a partnership with the Ontario Craft Cider Association and the Ontario Apple Growers. The strategy aims to see seven million litres of Ontario craft cider come to market by 2020.

“Our work is about developing a better understanding of who the cider consumer is, and the sensory, flavour and taste profiles they’re looking for in a cider,” says Amy Bowen, research director, Consumer Insights at Vineland Research and Innovation Centre (Vineland).

Bowen used Vineland’s trained sensory panel to develop a lexicon of 22 sensory attributes to describe taste, aroma, flavour, mouthfeel and colour of hard apple ciders. The same panel then applied those attributes to 50 cider brands currently available to consumers through the LCBO and Ontario cideries.

Next, 228 cider-drinking consumers rated their liking for a subset of those 50 ciders, and described each one using a provided list of terms. They also completed a questionnaire about consumption and purchase habits.

“We identified two main segments of consumers, one that was driven by sweet, fruit-forward flavour profiles, and another panel that was driven by less sweet, balanced, and more complex flavours,” Bowen says.

She notes there are significant differences in flavour and ingredients in domestic and imported ciders available to consumers through the LCBO.

Craft ciders are made from 100 per cent Ontario apples, while others are made in Canada using apple concentrate, and some imported ciders contain little fruit juice at all (less than 20 per cent).

Interestingly, two of three top-rated ciders tasted by study participants are not among the top five-selling cider brands at the LCBO.

“We want to develop ciders using 100 per cent Ontario apples that meet a sensory profile that consumers respond to,” she says. “If someone is looking for an apple cider, and they want a dry one or a sweet one, understanding those profiles allows us to be flexible in using mixes of apples that are well adapted to our industry.”

But if the industry is going to meet its growth targets, an additional 16,000 tonnes of apples – or 1.45 million trees – will be required. Work is underway to determine which apple varieties meet the climate, yield and taste profiles ideal to growing the cider industry.

“We need to think strategically,” Bowen says. “It’s a big, long-term investment to put an apple orchard in the ground. There’s a huge opportunity to look at how the apple variety mix aligns and meets the needs of this growing industry, to keep it profitable and flavourful.”

This project was funded in part through Growing Forward 2 (GF2), a federal-provincial-territorial initiative.
Published in Research
Move over, blueberries. A new University of Victoria study suggests the tiny fruit of a wild shrub that grows abundantly in B.C. is a contender for the healthiest berry on the planet.

UVic biologist Peter Constabel's research found that berries of the salal plant beat blueberries hands-down for two key compounds associated with health benefits. The study is published this month in the international journal of plant chemistry, biochemistry, and molecular biology, Phytochemistry. | READ MORE
Published in Fruit
A University of Maryland researcher has traced the origin of pest populations of the Colorado potato beetle back to the Plains states, dispelling theories that the beetle came from Mexican or other divergent populations.

Little was previously known about the beetle's origin as a pest, particularly how it developed the ability to consume potatoes and decimate entire fields so quickly. With its unique ability to adapt to pesticides almost faster than the industry can keep up, this beetle is consistently an issue for potato farmers. Using investigative evolutionary biology to determine the origins of this beetle and understand the pest's genetic makeup better, industry can better target pest management strategies to combat pesticide resistance and ultimately improve the potato industry.

The United States is the fourth largest producer of potatoes worldwide, producing over 20 million tons of potatoes each year. By comparing the genetics of pre-agriculture potato beetles, before the pest began to consume potatoes, to post-agriculture potato beetles, Dr. David Hawthorne of the Entomology Department and his team hope to understand why and how the beetle is developing resistance so quickly, and what can be done to slow resistance.

"The Colorado potato beetle is almost always one of the first insects to develop resistance to any pesticide. In fact, many contribute the entire pesticide arms race and development of pesticides to this particular beetle, which can destroy entire fields very easily," says Hawthorne.

"With this study," explains Hawthorne, "we were trying to gain insight into two major questions: Where did the potato beetle come from? And why do they evolve resistance so quickly? This would have major implications in controlling the pest, since the more growers have to spray, the greater their costs and risk to the surrounding environment. We need a strategy to weigh our options and determine the best way to control these pests without overspraying or even torching entire fields overrun with beetles, which has happened in the past when there has been no effective pesticide options."

Hawthorne and his team found that populations of beetles eating potatoes are most closely related to nightshade eaters in the Plains states. Beetles from Mexico, a possible source of the pest populations, were far too distantly related to have been the source of this beetles.

"Before they became pests, the plains beetles first evolved a taste for potatoes," says Hawthorne. "Some non-pest populations still don't eat them and will prefer the weeds surrounding the potatoes, but not the potatoes themselves. This is just one way that populations may differ."

By understanding the distinctions between these populations and which beetles are the source of current pest populations, more targeted pest management strategies can be developed based on the specific genetic makeup of the beetles, leading to more effective and less spraying.

Hawthorne describes this work as almost forensic biology, tracking the evolution and movement of this beetle across time and geography.

"I like that this work is very interdisciplinary," says Dr. Hawthorne. "It is about taking all the puzzle pieces and trying to put the whole story together to have the biggest impact on the field. Ultimately, this work is a major step towards understanding one of the most harmful pests, and has significant implications in controlling the population, keeping the potato industry stable, and fighting pesticide resistance and overspraying."

Dr. Hawthorne's study was published in The Journal of Economic Entomology.
Published in Vegetables
Join us Tue, Apr 24, 2018 2:00 PM - 3:00 PM EDT for an interactive webinar on Climate Change - Impact on Fruit and Vegetable Crops.
Published in Webinars
November 27, 2017, Guelph, Ont – Collaboration between vegetable growers, a farm organization, and a grower co-operative is leading to improved plant health and more efficient vegetable production in the Holland Marsh.

The Bradford Co-op, the Fresh Vegetable Growers of Ontario and individual vegetable growers in the Holland Marsh are collaborating on a project with the University of Guelph to test innovative technologies that will make their Integrated Pest Management (IPM) programs for key crops like onions and carrots more efficient and cost effective.

“We work together with industry partners and growers to fund and collaborate on our IPM programs in the Marsh,” explains Matt Sheppard, Bradford Co-op general manager. “There is tremendous value in early detection and this project is helping us identify issues in real time so we can provide the correct advice and solutions to growers.”

Weekly photos are taken of the vegetable fields in the marsh using an octocopter drone. Lead researcher Mary Ruth McDonald and her team at the University of Guelph’s Muck Crops Research Station run the IPM program and use the images for early detection of diseases and insects so growers can take appropriate measures to protect their crop and prevent or minimize damage.

Downy mildew, which causes lower yields and decreased storability, is the most damaging disease for onions in the area; Stemphylium leaf blight is also a significant concern.

“The technology we are able to access through this project makes our crop scouting program more effective and lets growers be proactive instead of reactive when it comes to crop protection,” explains Sheppard. “It’s very quick for a grower to have a problem area identified early and then decide how to treat it correctly to keep the crop healthy.”

Using information generated from the aerial images to prevent or minimize problems means less and more targeted use of crop protection materials, resulting in immediate savings of $5,000 to $50,000 per grower depending on the crop and the size of the farm.

More importantly, though, use of the technology ultimately ensures growers can keep supplying the market with quality produce and consumers have access to locally grown vegetables.

The marsh’s unique soils mean growers in the area have to work together to find solutions for their crop challenges, says Sheppard, adding that funding from Growing Forward 2 has been instrumental in bringing the collaboration together.

“Muck soil like ours doesn’t exist in other areas so we have to be self-sufficient and proactive to find solutions,” he says. “The technology is expensive so it’s something we wouldn’t be able to initiate on our own, but the investment with GF2 has allowed us to access the funds to make it happen.”
Published in Research
Delta, BC, November 20, 2017 – Farmers know the importance of keeping the land, water and air healthy to sustain their farms from one generation to the next. They also know that a clean environment and a strong economy go hand-in-hand.

The federal government recently announced a $1.8 million investment with the University of British Columbia to determine carbon sequestration and GHG emissions, and develop beneficial management practices (BMPs) for increasing the efficiency of fertilizer use in blueberry, potato and forage crops.

“This project will provide new science-based knowledge on net GHG emissions by accurately measuring GHG emissions and developing mitigation technologies for blueberry, potato and forage crops in the Lower Fraser Valley,” said Dr. Rickey Yada, dean of the Faculty of Land and Food Systems at UBC. “The research team will use state-of-the-art instrumentation and automated measurement techniques to quantify annual GHG emissions. While the specific research objectives are targeted to fill regionally identified gaps in knowledge, they will be applicable more broadly to similar agricultural production systems across Canada and Global Research Alliance member countries.”

This project with the University of British Columbia is one of 20 new research projects supported by the $27 million Agricultural Greenhouse Gases Program (AGGP), a partnership with universities and conservation groups across Canada. The program supports research into greenhouse gas mitigation practices and technologies that can be adopted on the farm.
Published in Research
October 30, 2017, Ames, IA – Organic agriculture practices eschew many synthetic fertilizers and pesticides, putting pressure on crops that conventional farming circumvents. That means an organic farmer who doesn’t use herbicides, for instance, would value crop varieties better suited to withstand weeds.

Enter Thomas Lubbserstedt, a professor of agronomy at Iowa State University. Lubberstedt and a team of ISU researchers recently received a four-year, $1 million grant from the U.S. Department of Agriculture to advance organic corn varieties. By the end of the project, the team aims to have identified elite varieties that will improve the performance of corn under organic growing conditions.

“Our main goal is to figure out whether new genetic mechanisms can benefit organic field and sweet corn varieties,” Lubberstedt said. “We want to develop traits that can do well under organic conditions.”

Lubberstedt said the research could lead to organic corn with better resistance to disease, weeds pests and environmental stress.

Farmers who label their products as organic adhere to standards meant to restrict the use of synthetic inputs that include many fertilizers and pesticides in an effort to maintain environmental sustainability. Demand for organic products is growing as consumers become more concerned about how their food is produced and how it affects the environment, said Kathleen Delate, a professor of agronomy and member of the research team. Delate said the U.S. market for organic products reached $47 billion in 2016.

The ISU research team intends to address limitations imposed by organic practices by finding genetic mechanisms that lead to better-performing corn varieties that can still meet organic standards. Lubberstedt will focus on varieties that carry a genetic mechanism for spontaneous haploid genome doubling. This allows a corn plant to carry only the genes of its mother.

Researchers can use these haploids to create totally inbred genetic lines in two generations, whereas traditional plant breeding takes five or six generations to produce inbred lines, Lubberstedt said. These inbred lines are more reliable for evaluation in an experimental setting because they carry no genetic variation that could influence results. That makes it easier to identify lines with superior traits, he said.
Published in Research
October 23, 2017, Guelph Ont – Ontario’s cider industry is working on new ways to quench the growing thirst for locally-grown hard cider, from the ground up. In 2011, the Ontario Craft Cider Association (OCCA) formed with a mandate to develop and maintain a world-class cider industry in Ontario using local fruit and craft methods.

It was a lofty goal, considering none of the cider apple varieties were readily available to Ontario growers. But with hard cider leading the growth category at LCBO stores, the group saw an opportunity to grow the seven per cent market share Ontario cider currently has of this segment. And in the process, the effort would support locally-grown cider to strengthen this made-in-Ontario industry.

“Ontario growers have been producing local cider for years using fresh apple varieties and they make a good cider,” says Tom Wilson, owner/operator of Spirit Tree Estate Cidery in Caledon and OCCA chair. “But we know that European varieties grown specifically for the cider market contain a much better flavour profile and tannin content to make high-quality hard cider.”

One of OCCA’s first projects involved grassroots research to evaluate European cider apple cultivars under Ontario’s growing conditions to understand the agronomics of growing the varieties and evaluating the attributes of the resulting juice for cider quality.

“Our group is part of a three-phase project to build a bigger cider industry in Ontario,” says Wilson, who is a third-generation Ontario apple grower. “There is very limited information available for our members on how European cider varieties will perform in Ontario. We really need science-based information to help growers make informed choices about using cider apple cultivars that will create the type of cider the market is craving.”

The first phase of the project was to source the genetic material to grow some of the European cider apple cultivars. The second phase, supported in part by Growing Forward 2 (GF2) funding accessed through the Agricultural Adaptation Council (AAC) is where the grassroots, field research took place.

Five orchards around the province were chosen to plant 29 new cider apple cultivars to gather local performance data on how the trees grow and the attributes of the resulting juice.

While OCCA is learning the finer points of growing European cider cultivars, they also commissioned an economic impact study of the Ontario industry.

Building a stronger cider industry in Ontario will return greater economic activity for the 25 craft cider producers, and in the process deliver many spin-off contributions to the broader community.

“The latest economic impact study we commissioned in late 2016 identified a number of other benefits for our growing sector, including tourism, rural development, attracting new businesses, community events and contributing to employment and training opportunities in the areas where our members operate,” says Wilson.

OCCA’s commissioned report provides encouraging statistics about the contributions of the Ontario industry to the economy, and the results confirm a growing opportunity for Ontario growers and cider lovers. Ontario-grown cider contains all the elements of a great agri-food success. Consumers are ready and eager to support local, Ontario’s cider growers are making great strides with new cider apple varieties and hard cider is a beverage category that continues to exceed growth targets year after year.
Published in Fruit
October 12, 2017, Deschambault, Que – The Canadian government is prioritizing science and innovation and the competitiveness of the agriculture industry as a whole to create better business opportunities for producers and Canadians.

Funding was announced recently for two projects by the Centre de recherche en sciences animales de Deschambault (CRSAD), including a plan to increase the pollination efficiency of bees to achieve better yields in cranberry production.

Funding of $183,127 will enable the CRSAD to identify the best method of feeding bees with sucrose syrup and to test variations of that method to maximize the bees’ pollination efficiency in cranberry production. The outcomes of this project are designed to increase cranberry yields and decrease bee feeding costs.

“The CRSAD is very appreciative of the federal government’s strong support for its research activities,” said Jean-Paul Laforest, president of the CRSAD. “Canada holds an enviable position in the world for cranberry production, and bees are major allies of the industry. Our project will deliver positive outcomes for both cranberry production and the bees themselves.”

In 2016, the Quebec cranberry industry generated nearly $82 million in market receipts and over $30 million in exports.

 
Published in Research
August 30, 2017, California - The Public Strawberry Breeding Program at the University of California, Davis, and colleagues in California and Florida have received a $4.5 million grant from the National Institute of Food and Agriculture of the U.S. Department of Agriculture to improve the disease resistance and sustainable production of strawberries throughout the nation.

The collaborative grant is good news for strawberry farmers and consumers everywhere, according to Rick Tomlinson, president of the California Strawberry Commission. To signal its own support, the strawberry commission pledged an additional $1.8 million to the UC Davis program.

“An investment in the UC Davis strawberry breeding program is an investment in the future of strawberries,” Tomlinson said. “Thanks to their groundbreaking research and strong partnerships, Director Steve Knapp and his colleagues are developing improved strawberry varieties publicly available to farmers.”

Improving genetic resistance to disease

Strawberries constitute a $4.4 billion-dollar industry in the United States, and 94 percent of the nation’s strawberry fruit and nursery plants are grown in California and Florida.

Strawberries are especially vulnerable to soil-borne pathogens, which destroy plants and greatly reduce yield. Since the 1960s, strawberry growers have depended on fumigants like methyl bromide to treat soils before planting berries in an effort to control disease. But methyl bromide has been phased out by the Environmental Protection Agency and will no longer be available after 2017.

“Following the elimination of methyl bromide fumigation, strawberry growers are under greater economic pressures, and there is an urgent need for improved, disease-resistant strawberry varieties that will thrive without fumigation,” Knapp said.

Knapp will head a team of scientists from UC Davis, UC Santa Cruz, UC Riverside, the UC Division of Agriculture and Natural Resources, Cal Poly San Luis Obispo, and the University of Florida.

Together, researchers will identify and manage pathogen threats, mine elite and wild genetic resources to find natural sources of resistance to pathogens, and accelerate the development of public varieties resistant to a broad spectrum of disease and other pests.

“Strawberry growers are faced with the need to deliver high-quality fruit to consumers year-round, while protecting the environment, fostering economic growth in their communities and coping with profound changes in production practices,” Knapp said. “We look forward to collaborating with our industry partners through research, agricultural extension and education to help them reach those goals.”

UC Davis Public Strawberry Breeding Program

During six decades, the UC Davis Public Strawberry Breeding Program has developed more than 30 patented varieties, made strawberries a year-round crop in California and boosted strawberry yield from just 6 tons per acre in the 1950s to 30 tons per acre today.

Knapp took over directorship of the program in 2015. He and his team are working to develop short-day and day-neutral strawberry varieties; studying the genetics of disease-resistance, fruit quality and photoperiod response; and applying genomic techniques to make traditional strawberry breeding more efficient. They have 10 public varieties in the pipeline and plan to release one or two new strawberry varieties later this year.

Initiative collaborators

The grant is funded by USDA’s Specialty Crop Research Initiative. Collaborators from UC Davis include agricultural economist Rachael Goodhue, plant pathologist Thomas Gordon, and plant scientists Julia Harshman and Thomas Poorten.

Other key collaborators are Oleg Daugovish with UC Agricultural and Natural Resources; Alexander Putman at UC Riverside; Julie Guthman at UC Santa Cruz; Gerald Holmes and Kelly Ivors, both at Cal Poly; and Seonghee Lee, Natália Peres and Vance Whitaker, all of the University of Florida.
Published in Research
August 29, 2017, Vineland, Ont. – Farmers interested in adding a new crop to their production line-up may want to look at okra as an opportunity.

That’s according to researchers at Vineland Research and Innovation Centre (Vineland) who have been working with the crop for the past five years and have some very promising results from two years of field trials with three okra varieties.

“We know okra can be grown commercially in southern Ontario and that yields of 20,000 kg per hectare are possible,” said Vineland research scientist Dr. Viliam Zvalo.

Canada imported over six million kilograms of okra in 2015 – an increase of 43 per cent since 2011 – so the market demand for this new crop, popular especially in South and Southeast Asian cuisine, is there.

Zvalo is particularly excited about three additional varieties Vineland has been able to source from East West Seeds from Thailand. The company is a key player in the okra seed market in countries like India, the Philippines, Malaysia and Thailand where much of the world’s okra is grown.

“We planted some of these varieties in June last year and were amazed by the yield potential,” he said. “I believe they may outperform the varieties we’ve been using so far and we are quite optimistic they’ll do very well here.”

Okra grows well in Canada’s hot summers but less is known about its performance in cooler, wet weather. However, Zvalo believes these new Asian varieties, which are developed for the cooler monsoon season, should perform well in Canada. Also, one variety is slower to mature than others, which means it needs to be harvested only every two or three days.

“Normally okra has to be picked daily to keep it from over-ripening and becoming woody, so this would give growers a bit of a buffer at harvest time,” he said.

Retail support for the new crop has been strong with prices for growers averaging $2.50 – $2.60 per pound. The key to getting into the okra business, though, is knowing the market, believes Zvalo.

“Big retailers are very interested in locally-grown okra, but are unlikely to deal with growers who only grow half an acre,” he said. “And if you’re harvesting and shipping daily, you need to be reasonably close to the market to get the crop there on time and be cost-competitive.”

For those interested in experimenting with okra, Vineland will provide a small quantity of seeds per variety as well as technical assistance related to growing the crop. This lets growers see first-hand how the varieties perform in their particular climate and soil.

According to Zvalo, the crop will grow reasonably well in areas of 2700 – 3300 crop heat units and growers in Ontario, Quebec, British Columbia and Manitoba are trialing all six of the varieties this year.

Vineland has been conducting okra research on optimal plant spacing, fertilization, use of covers in early spring as well as the impact on yield potential of direct seeding versus transplanting. More information is at http://vinelandresearch.com/program/feeding-diversity-bringing-world-crops-market.

“I think the okra story is definitely more promising today than it was just a few years ago,” Zvalo said.

Vineland’s okra research is funded in part by Growing Forward 2, a federal-provincial-territorial initiative, through the AgriInnovation Program.
Published in Vegetables
August 16, 2017, Ottawa, Ont. - Canadian fruit growers need the best varieties of plants to be successful. In the case of Canadian strawberry growers, they grow the best varieties of plants, which foreign buyers demand. The import and export of fruit plants, however, must go through the Canadian Food Inspection Agency (CFIA) to test for potentially devastating plant viruses. Currently, this testing and quarantine process takes an average of three years to complete, significantly hampering the speed of trade.

Today, the Honourable Lawrence MacAulay, Minister of Agriculture and Agri-Food, announced that the CFIA will lead two projects worth $500,000 that use new DNA-based technologies to reduce the quarantine testing time, helping to boost trade and economic competitiveness in the $240 million Canadian fruit tree industry.

"Together with provincial partners and industry, our government is making the investments in innovative science that enables agriculture to be a leading growth sector of Canada's economy. Together we can help meet the world's growing demand for high-quality, sustainable food and help grow our middle class," Minister MacAulay, said. 

The first project will dramatically shorten the testing period of seeds, cuttings and bulbs imported into Canada to grow new varieties of plants. With this funding, scientists will use DNA technology to test for all viruses associated with imported plants to get an early indication of any plant diseases present. This approach could reduce the quarantine testing time by up to two and a half years.

The second project streamlines the testing of strawberry plants. Traditionally, multiple tests for viruses are required before exporting strawberry plants to foreign markets. This project will test for multiple viruses in one single test, dramatically reducing the time and cost to get plants to market.

Funding for these projects is provided through a partnership between the CFIA, Genome British Columbia, Summerland Varieties Corporation, Phyto Diagnostics, the British Columbia Cherry Association, and Vineland Research and Innovations Centre.

"Canadian import/export markets will be stronger and more competitive because of these genomics-based tools. Early detection of pathogens and viruses is a vital outcome of genomics and it is being applied across many key economic sectors." Dr. Catalina Lopez-Correa, Chief Scientific Officer and Vice President, Genome British Columbia said. 
Published in Fruit
August 2, 2017, Ottawa, Ont. - Domestic subsidies in many countries encourage production increases that result in considerable surpluses and lower prices on global markets, according to a new study released today by the Canadian Agri-Food Policy Institute (CAPI).

The study also found these production increases fuel highly unsustainable production practices and the misallocation of natural resources.

The comprehensive study, Understanding Agricultural Support, was prepared by Al Mussell, Douglas Hedley, Kamal Karunagoda, and Brenda Dyack of Agri-Food Economic Systems, with support from the Canadian Federation of Agriculture and Ontario Ministry of Agriculture, Food and Rural Affairs. The report seeks a better understanding of the impacts of domestic income support programs in key markets and competitors on the competitiveness of Canada's agriculture and agri-food sector.
Published in Research
August 2, 2018, Guelph Ont. – Reducing food waste is not just the right thing to do; it’s also a way to improve business efficiency and profitability.

That’s the outcome of a food waste reduction project spearheaded by the Ontario Produce Marketing Association (OPMA) with funding provided by Growing Forward 2.

OPMA teamed up with Value Chain Management International (VCMI) to develop a workbook, prepare several case studies, and roll out a series of workshops to help OPMA members wrap their heads around how they can reduce waste in their businesses while making more money in the process.

“This is to identify opportunities for improvement in the value chain; if you improve process, you automatically reduce waste in areas like labour, energy, product, packaging and transportation,” project lead Martin Gooch told participants in the Agricultural Adaptation Council’s summer tour on June 14. “This will position the Ontario produce industry as a leader in reducing food waste, but it’s also a business opportunity for the entire value chain.”

The first Ontario industry case study was recently released, with three more nearing completion. The case study with a progressive Ontario potato supplier, EarthFresh Foods, clearly shows the business opportunity in addressing food waste: a 29 per cent increase in grade-out of potatoes results in a 74 per cent increase in producer margin.

Most of the produce loss can be directly attributed to production practices, storage and handling, but addressing the problem requires a slight shift in thinking for farmers.

“Farmers often look at what their production per acre is, but don’t connect that with how much is actually being marketed and that’s where they are paid,” he said. “If you can prevent that 29 per cent loss of product, that’s an overall $17,000 increase in return on a single trailer load of potatoes. Businesses also benefit from incurring lower costs.”

To date, close to 100 people have participated in the waste reduction workshops developed by VCMI. The accompanying workbook uses a whole value chain perspective, and was designed to be an easy to use tool for businesses small and large with 10 easy steps to follow.

“You don’t need to have a PhD in math or be a statistical genius to improve your business,” Gooch said. “It’s about identifying where the opportunities are, what the causes are, and how do we address those causes in a constructive way.”

Overall, participants come away from the workshop with solutions they can use to improve performance in their businesses and no longer simply accept waste and “shrink” as part of doing business. Media interest in the initiative has been strong with global coverage, and other sectors, like meat processing, are making inquiries about applicability of the program to their industries.

More information is available at www.theopma.ca.

This project was funded in part through Growing Forward 2 (GF2), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario.
Published in Research
July 27, 2017, Vineland, Ont – It’s been 10 years since a new horticultural research facility in Niagara Region was launched as the Vineland Research and Innovation Centre (Vineland).

Since then, Vineland has been turning heads across Canada and internationally with its needs-based innovations. The organization reflects the entire horticulture value chain from farmers to consumers, and they’re not afraid to take big steps to help the industry solve problems.

“We started by understanding what needed to be done and how we needed to work to make a difference, which is real results with real impact from acres in the field to shelf space in the store,” says Vineland’s CEO, Dr. Jim Brandle.

Addressing the labour intensive nature of horticultural production was a need identified early on. Today, machines designed in Vineland’s robotics program and built in Ontario are coming into use in fruit and vegetable greenhouses, which Brandle says will go a long way in helping to keep growers competitive, as well as boost the local manufacturing and automation sector.
Sweet potatoes, okra and Asian eggplant are offering new market opportunities for growers and consumers eager to eat more locally produced food.

And Vineland’s rose breeding program made a big splash earlier this year when its Canadian Shield rose – a trademarked low-maintenance and winter hardy variety bred in Canada – was named Flower of the Year at Canada Blooms.

Another significant milestone was the construction of the largest, most modern horticultural research greenhouse in North America with commercial-scale height and growing rooms dedicated to horticulture, which opened in 2016 and was built around the needs of Canada’s greenhouse vegetable and flower growers.“Today, we’re commercializing innovations, from the Canadian Shield rose to new apple and pear varieties,” Brandle says. “We are having the kind of impact that we sought in those early days.”

Natural ways to control greenhouse pests – called biocontrols – are making a real difference to flower growers and a new technology that can identify genetic variants for traits in all plants has just been spun-off into a for-profit company.

“We’re creating a reputation and that alone is an achievement because we’re the new kid on the block,” he says. “We have a ton of good people with and around the organization and on our board who are making this happen.”Vineland is an important partner to the horticulture industry, according to Jan VanderHout, a greenhouse vegetable grower and Chair of the Ontario Fruit and Vegetable Growers’ Association.

“They are very good at asking us what we want and taking a whole value chain approach to research and innovation,” VanderHout says. “You need the right facilities and expertise and Vineland fills that need to the benefit of the industry as a whole.”

Looking to the future, both Brandle and VanderHout predict that cap and trade pressure and high energy costs will result in more work around energy use and carbon footprint reduction.And Vineland’s consumer-focused approaches will continue to drive new innovation, from high flavour greenhouse tomatoes to Ontario-grown apple varieties.

“We will further lever consumer-driven plant breeding and work with the intent around pleasing consumers and trying to understand what they want so we can build that into our selection criteria,” Brandle says.
Published in Profiles
July 25, 2017 – Ottawa, Ont. - A Food Policy for Canada will set a long-term vision for the health, environmental, social, and economic goals related to food, while identifying actions we can take in the short-term.

We have reached out to Canadians to help shape the policy because we know that by working together, we can build a food policy that is a shared vision to address food-related opportunities and challenges in Canada.

A strong response from across the country has prompted Agriculture and Agri-Food Minister, Lawrence MacAulay, to encourage even more citizens to have their say.

With over 22,000 Canadians having completed the online survey launched on May 29, the comment period has been extended to August 31, 2017, to allow even more Canadians to share their views on A Food Policy for Canada.

The online survey is one of a number of consultation activities planned to engage with Canadians on this issue.

The Government of Canada is also encouraging community leaders and organizations to continue having food policy discussions in their own regions across the country. A toolkit is now available online that can help organizers host discussions and gather feedback on what matters most when it comes to food policy.

Following a successful food policy summit held in Ottawa in June, the Government of Canada will be holding regional engagement sessions across Canada throughout August and September. Stakeholders, Indigenous groups, experts, and key policy makers will be invited to attend these sessions and share their views on the development of A Food Policy for Canada.

A Food Policy for Canada, which will be the first-of-its-kind for Canada, will help address food issues and pursue opportunities in areas related to:

· increasing access to affordable food;
· improving health and food safety;
· conserving our soil, water, and air; and
· growing more high-quality food.
Published in Federal
Page 1 of 3

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular