Research
Chinese scientists have developed a nanomaterial to control potato sprouts and reduce the poisonous substance in potatoes, providing a new method for potato storage.

Stored potatoes usually sprout rapidly, at the same time producing a significant amount of solanine, a toxic substance which endangers human health. Potato sprouts can be controlled using various techniques such as temperature control, irradiation and use of chemical inhibitors.

Scientists from Hefei Institute of Physical Science under Chinese Academy of Sciences developed a new nanomaterial called hydrophobic nano silica that can be used to inhibit the growth of potato sprouts. When potatoes are immersed in the solution of the material, a hydrophobic coating is created on the surface of the potatoes, effectively inhibiting potato sprouts and decreasing solanine. | READ MORE
Published in Research

Shipping cherries overseas is a high stakes game – every container carries approximately $100,000 of fruit. International consumers are becoming increasingly picky and buyers will only accept high quality cherries at port. Growers and packers are making it a top priority to ensure cherries make the journey in top form, impressing both international buyers and consumers.

Fortunately, advances in science are making it possible to measure cherries’ quality while they are still hanging on the tree, without damaging any in the process.

A team of researchers at Agriculture and Agri-Food Canada (AAFC) in Summerland is working with mobile hand-held optical spectrometers to develop models to precisely gauge the quality of cherries, and predict their firmness and flavour after storage or shipping.

The research team 
Dr. Peter Toivonen leads the Postharvest Physiology program at AAFC’s Summerland Research and Development Centre, which includes research technician Brenda Lannard and biologist Changwen Lu.

Together, they are fine-tuning models using specific commercial spectrometers to make this technology useful for Canadian cherry producers.

The team is determining the best values for fruit quality and storability for cherry varieties, including Lapins, Staccato, Sweetheart and many others that are grown commercially.

The work includes fine-tuning and expanding the use of the technology by developing specific protocols for working under a variety of conditions while ensuring consistent and meaningful readings.

The team is also working to identify any limitations to the technology before transferring it to end-users. As with other technologies, users – most likely skilled quality assurance or field service staff – will need training before putting these devices to work in the field. Working with industry to properly implement the technology will be the key to success.

What is the impact to growers?
Using hand-held spectrometers, in combination with knowledge generated from Dr. Toivonen’s research, will give cherry growers precise data on their crop’s ‘best before’ date.

“Being able to reliably measure the maturity and quality of cherries, without sacrificing any of that crop to sampling, will save hundreds of thousands of dollars a year on container shipment claims for the industry,” estimates Dr. Toivonen.

Consumers’ expectations are high and if Canadian growers can improve their reputation for consistent high quality and flavour, the industry will benefit. Growers could see a 10-20% increase on returns thanks to improved consistency in quality.

“People are doing this work in other countries. If we are not part of it, we are behind,” advises Dr. Toivonen. Luckily, his team is working to keep the industry on the leading edge and consumers happy.

A closer look at the science: Q&A with Dr. Toivonen
What are optical spectrometers?

An optical spectrometer is a scientific instrument that emits light and measures how much of that light reflects back to the instrument. You hold the device against a cherry, it shines light on the surface of the intact fruit, and it measures the amount of light of each wavelength reflected back. The reflected light depends on the chemical composition of the fruit. Spectrometers were once cumbersome pieces of equipment, suited only for laboratory use, but now they are designed specifically for use in orchards.

What is dry matter?

Dry matter is what’s left in the fruit after all the water is removed. In cherries, dry matter is equivalent to sugar content, and is a good indicator of ripeness, quality after storage and flavour.

A grower who knows the dry matter content of their cherries can determine how well that fruit will do in storage, and decide which fruit to sell immediately and which to store or ship internationally. In short, using dry matter to make decisions on storage, shipping and market selection could lead to a consistent supply of crisp and delicious cherries from Canadian growers.

How do you measure dry matter?
The ‘old fashioned way’ of measuring dry matter isn’t practical for an orchard operation. You cut fruit into thin slices, weigh it and bake it at 60oC in an oven for two to three days until all the water is removed, then weigh it again. Your sample size is limited by oven space, samples are tedious to process, and valuable time is lost waiting for results. That could mean missing the best time for harvesting and shipping your cherries.

After the team completes validation of the scientific models for commercial spectrometers, growers will have a tool that can produce instant dry matter readings on as much fruit as needed without damaging any of it.

Published in Fruit
Canada's agriculture and agri-food system contributes $110 billion to Canada's economy, with more than $64.6 billion in exports.

Agriculture risk management is important to the sector – it helps stabilize farmers' incomes, strengthens farm businesses, and encourages growth in the agricultural sector.

Under the Canadian Agricultural Partnership, governments continue to support the development of new risk management tools that reflect the changing nature of the business.

Building on the successes of Growing Forward 2, the AgriRisk Initiatives Program has been renewed under the Canadian Agricultural Partnership. Minister of Agriculture and Agri-Food Lawrence MacAulay announced that the $55 million program will encourage partnerships between agriculture industry stakeholders, researchers, and federal, provincial and territorial governments to proactively explore and develop new risk management products and services for the agricultural sector.

Funding is available under two components: Research and Development and Administrative Capacity Building.

In response to recommendations received from the BRM Review Expert Panel, priority will be given to proposals for industry-led projects to develop new and innovative business risk management tools.

"Canada's hard-working farmers constantly face volatility and unpredictability in their business. Our Government is launching this renewed AgriRisk program to help protect our hardworking farmers from the risks they face so they can continue to grow the economy and create good, well-paying jobs. This announcement responds to what we heard from the external advisory panel on business risk management," said Minister MacAulay
Published in Federal
Canada's wine sector is growing, with the industry generating revenues of $1.2 billion in 2016 and employing over 5,600 people. Wine makers and grape growers across the country are working hard to ensure their businesses are able to thrive in Canada's climate, and innovate as the industry grows.

Federal Minister of Agriculture and Agri-Food, Lawrence MacAulay, recently announced an investment of up to $8.4 million to the Canadian Grapevine Certification Network (CGCN) under the Canadian Agricultural Partnership's AgriScience Clusters.

This is the first time grape and wine producing organizations from across the country have come together, as the CGCN, to develop a national research cluster.

This research investment, which includes up to an additional $3.7 million from industry contributions, will help growers better protect their crops, test new vine varieties, and analyze growing practices in Canadian vineyards that are better for the environment.

Minister MacAulay also congratulated the Canadian Vintners Association on completing a $1.5 million project under Growing Forward 2's AgriMarketing program.

This funding helped the Canadian wine industry enhance Canada's international reputation as a top cool climate wine producer through market development and trade advocacy activities, and helped launch the Wines of Canada brand.

Minister MacAulay also announced an additional investment of $1.5 million over three years to the Canadian Vintner's Association under the Canadian Agricultural Partnership's AgriMarketing program. The funding will assist the industry in activities such as participation in trade shows, missions, and promotions in traditional markets, such as the United States, the United Kingdom, and China, as well as CVA's participation at international trade advocacy events.

"Today's announcement and investment in the Canadian Grapevine Certification Network for Canada's grape growing industry comes after many years of hard work and collaboration. The Grape Growers of Ontario are pleased to be working alongside our partners in Nova Scotia, Quebec, British Columbia and with Agriculture and Agri-Food Canada to create a domestic supply of clean rootstock which is critical to the future of Canada's grape growing industry," said Matthias Oppenlaender, chair, Grape Growers of Ontario.

Today's announcement is part of the Minister's cross country 'Growing Canadian Agriculture' tour which started in Quebec last week and ends in B.C. on July 17.

The Minister is meeting with farmers, processors and industry leaders, as well as participate in rural agricultural events, to highlight strategic federal agricultural investments and programs - including those recently launched under the Canadian Agricultural Partnership—and how they will help to build an even stronger and more innovative sector for Canada.

"I'm thrilled to be launching Canada's first-ever grape and wine cluster. Our domestic grape and wine sector has had a positive impact on Canada's economy, and it continues to grow. Today's announcement will help increase the market share of Canadian wines by supporting research that improves wine quality and vineyard management practices, addresses challenges faced by the sector, and build upon Canada's international reputation as a top cool-climate wine producer," said Minister MacAulay.


Published in Federal
It is well known that vegetables are good for people but they could also be the key to making stronger and greener buildings.

Engineers at Lancaster University are working with industrial partners at Cellucomp Ltd. UK to research how concrete mixtures can be strengthened and made more environmentally friendly by adding ‘nano platelets’ extracted from the fibres of root vegetables.

The work, which is being supported with £195,000 by the European Union’s Horizon 2020 funding, will build on findings from early tests that have demonstrated that concrete mixtures including nano platelets from sugar beet or carrot significantly improve the mechanical properties of concrete.

These vegetable-composite concretes were also found to out-perform all commercially available cement additives, such as graphene and carbon nanotubes and at a much lower cost.

The root vegetable nano platelets work both to increase the amount of calcium silicate hydrate – the main substance that controls the performance of concrete, and stop any cracks that appear in the concrete.

By increasing the performance of concrete, smaller quantities are needed in construction.

The construction industry is urgently seeking ways in which to curb its carbon emissions. The production of ordinary Portland cement, one of the main ingredients for concrete, is very carbon intensive – its production accounts for eight per cent of total global CO2 emissions. This is forecast to double in the next 30 years due to rising demand.

The proof-of-concept studies showed that adding the root vegetable nano platelets resulted in a saving of 40kg of ordinary Portland cement per cubic metre of concrete – which gives a saving of 40kg of CO2 for the same volume. This is because the greater strength of the root vegetable mixture means smaller sections of concrete are required in buildings.

Professor Mohamed Saafi from Lancaster University’s Engineering Department and lead researcher, believes root vegetable concrete vegetables could go a long way to reducing construction carbon emissions.

He said: “These novel cement nanocomposites are made by combining ordinary Portland cement with nano platelets extracted from waste root vegetables taken from the food industry.

“The composites are not only superior to current cement products in terms of mechanical and microstructure properties, but also use smaller amounts of cement. This significantly reduces both the energy consumption and CO2 emissions associated with cement manufacturing.”

The vegetable-based cementitious composites were also found to have a denser microstructure, which is important to prevent corrosion and increasing the lifespan of the materials.

The research project is also looking at adding very thin sheets made from vegetable nano platelets to existing concrete structures to reinforce their strength. The researchers believe that the vegetable nanofibre-based sheets will out-perform existing alternatives, such as carbon fibre. This is partly because concrete beams reinforced with the sheets will be able to bend more, which would help deflect potentially damaging forces.

The two-year research project will investigate the science behind the results of the proof-of-concept studies to gain a fuller understanding of how the vegetable nano platelet fibres enhance the concrete mix. The researchers will also seek to optimise the concrete performance to help produce a mixture that can be used in the construction industry.

Cellucomp Ltd already uses fibres from root vegetables to manufacture more durable paints.

Dr Eric Whale from Cellucomp Ltd said: “We are excited to be continuing our collaboration with Professor Saafi and developing new applications for our materials, where we can bring environmental and performance benefits.”
Published in Vegetables
A group of fungi might fight a disease that’s dangerous to tomatoes and specialty crops. University of Florida scientists hope to develop this biological strategy as they add to growers’ tools to help control Fusarium wilt.

Using a $770,000, three-year grant from the USDA, Gary Vallad, associate professor of plant pathology, hopes to harness the advantages of fungi known as trichoderma to fight Fusarium wilt.

Vallad will work on the project with Seogchan Kang, Beth Gugino and Terrence Bell from the department of plant pathology and environmental microbiology at Pennsylvania State University and Priscila Chaverri from the department of plant science and landscape architecture at the University of Maryland.

Scientists hope to use trichoderma to supplement various pest-management methods to help control Fusarium wilt, Vallad said.

Trichoderma are ubiquitous fungi in soil and on plants, and they have been used in agriculture as biological control agents, he said.

UF/IFAS researchers have used trichoderma to try to control pathogens, but with little to no success. With this new round of research, they hope to understand what factors limit the fungus’ benefits as a biological control agent, Vallad said. That way, they hope to develop ways to increase its ability to control Fusarium wilt.

Growers began using other fumigants as methyl bromide was gradually phased out from 2005 until it was completely phased out of use in 2012, Vallad said. As growers tried various ways to control diseases, including alternative fumigants, they saw a re-emergence in soil-borne pathogens and pests on many specialty crops, including tomatoes, peppers, eggplant, watermelon, cantaloupes and strawberries, Vallad said.

When the project starts July 1, UF/IFAS researchers will do most of their experiments on trichoderma at the GCREC, but they’ll also use crops from commercial farmers during the project.

Vallad emphasizes that their research goes beyond Florida’s borders. Studies in Pennsylvania and Maryland will likely focus on small to medium-sized farm operations.

“We are focusing on tomato production Florida, Maryland and Pennsylvania,” he said. “We hope that our findings will help improve management of Fusarium wilt with trichoderma-based biological control agents.”
Published in Research
Second Harvest is working with Value Chain Management International (VCMI) on a ground-breaking food loss and waste (FLW) project, funded by the Walmart Foundation.

A world first, the project is researching FLW from a whole Canadian chain perspective – from primary production to consumer.

The project encompasses Canada’s food and beverage industry (including fruit, vegetables, dairy, meat, grains and oilseeds, sugars and syrups, beverages and seafood). The purpose of the study is to establish a framework and metrics that businesses operating in the farming, processing, retail and foodservice sectors can use to 1) understand where losses are likely to occur and 2) identify ways to improve their performance and profitability by reducing losses and waste.

The team will achieve this by collecting data that will allow an accurate estimate of FLW occurring at discrete points along the value chain and evaluating the comparative impact of root causes. The project will also estimate losses that occur during the redistribution of rescued and donated food, for example in foodbanks.

Key outcomes of the project:
  • It will calculate the total amount of food available for human consumption in Canada.
  • Through conducting pioneering primary research, it will identify where, how and why waste occurs along the chain.
  • It will identify potential root-cause solutions to reduce the percentage of Canadian food sent to landfill – by proposing improved redistribution, reuse and recycling practices.
  • It will identify greater opportunities for food to be recovered and distributed to people who are food insecure.
  • It will culminate in the production and dissemination of a manual of scalable and sustainable solutions for addressing and preventing food waste.
800 to 1,000 survey respondents to be targeted across the entire value chain – Canada wide.

Second Harvest and VCMI are targeting 800 to 1,000 respondents from across the entire value chain to gain insights from farmers, food and beverage processors, retailers, foodservice operators, institutions and food redistributors across Canada (regardless of their size).

If you fall in this category of participants, and would like to take part in the short, completely confidential survey, please access the link: https://www.surveymonkey.com/r/2018FLWSurvey

The project will be completed by the end of 2018.

“We are thrilled to be working with Second Harvest on this revolutionary food loss and waste project,” said Martin Gooch, CEO of VCMI. “Prior studies relied on existing data, largely not gathered for calculating food loss and waste; we are collecting and analyzing data that will achieve this. The project outcomes will have important implications for businesses, industry, researchers and government.”
Published in Research
Some people regard frozen vegetables as a disappointing alternative when fresh veggies are not available. But that is likely to change with new methods of preparing food for cold storage.

Dr. Tony Savard and his team from Agriculture and Agri-Food Canada’s St-Hyacinthe Research Development Centre re-examined the usual way of treating vegetables -blanching - which refers to briefly heat-treating the vegetables before freezing.

While this method is helpful for ensuring food safety and preventing freezer burn, it also affects the taste and texture which some people don’t like even when nutritional value is retained.

The team worked with Bonduelle Amérique as part of the Canadian Food Innovator research cluster, to come up with a fresh alternative for processing vegetables for freezing: partially drying them using low doses of microwaves combined with a vacuum process. Doing so avoided the breakdown of vegetable tissue that happens with freezing and thawing. This innovative method preserves the natural flavour and even improves it in certain cases, while still ensuring food safety. Furthermore, the texture of the vegetables is maintained.

"New markets are possible if we can improve the taste of frozen vegetables and maintain high standards of food safety," says Savard.

Whether or not a consumer picks a frozen option likely depends on their previous experience with frozen foods. And with healthy choices being so popular among Canadians, creating frozen foods that are both healthy and tasty is important. As such, Savard and his team will continue exploring new options for preserving the veggies that we love to eat.

Ultimately, if new methods of food preservation can be developed then new markets will also be opened. The domestic market for preserved fruits and vegetables is valued at $7.5 billion. The export market is also strong, worth over $3 billion in 2015, according to Statistics Canada. That same year saw almost $6.5 billion in total revenue. There are more than 17,000 Canadians employed in the sector, contributing in different ways to produce great food options. With so much economic activity generated it is important to identify what food areas can be improved upon.

The findings emerged from a "research cluster" organized between government and industry. Bringing together expertise from the public and private sectors has generated positive results like this new preservation method. Best of all, it’s helping Canadians find something both healthy and delicious to eat.

Key discoveries:
  • Soggy onions and peppers no more! New preservation method improves natural flavour and maintains texture during freezing and thawing.
  • Food processing industry will have new tools to preserve vegetables, which may open new markets.
Published in Vegetables
The Federation of Canadian Municipalities (FCM) recently released a report that details the important contribution rural municipalities make and outlines the unique challenges they face.

The comprehensive report titled Rural Challenges, national opportunity – Shaping the future of rural Canada includes recommendations encouraging the federal government to tackle these challenges head-on and raise Canadians’ quality of life nationwide.

“When it comes to providing the infrastructure necessary to support a strong economy and high quality of life, rural governments are faced with two key problems—the challenge of serving dispersed communities and the limits of their fiscal and administrative capacity,” said FCM’s rural forum chair, Ray Orb.

The report provides recommendations to address the realities rural municipalities face. Key recommendations of this report include:
  • Applying a ‘rural lens’ to all federal policies and programs aimed at empowering smaller communities to better support local needs
  • Designing future rural infrastructure programs that provide long-term predictable funding with flexibility to account for rural realities
  • Committing long-term predictable resources to expanding broadband internet access in rural, northern and remote communities
“This report tells the story of the significant contribution rural municipalities make to the nation’s economy, but it also highlights the fiscal squeeze they face due to low population densities and the exodus of younger generations,” added Orb. “But as a key driver of economic growth, we know that investing in rural Canada means building a better country for everyone.”

FCM is leading the way in advocating for new tools that empower rural communities to build tomorrow’s Canada and has secured unprecedented federal investment in recent years. The full report is available here.

The Federation of Canadian Municipalities is the national voice of municipal governments, with nearly 2,000 members representing more than 90 per cent of the Canadian population.
Published in Associations

Potato is the third most important crop in human nutrition, after wheat and rice. Knowing and improving its agronomic, nutritional and industrial aspects is essential and in this task a group of researchers specialized in biotechnology of the INTA Balcarce is focused.

Recently, with a trajectory more than 7 years in gene editing technologies, they were able to confirm that the DNA sequence had been modified, while they hope to corroborate the shutdown of the gene that causes enzymatic browning in potatoes ( Solanum tuberosum L. ).

When applying this technique, the team led by Feingold focused on a polyphenol oxidase gene, whose enzyme causes browning in tubers when they are cut and exposed to air. | For the full story, CLICK HERE.

Published in Research
Protecting fruit crops from birds and other predators has never been easy. Scarecrows, reflective tape, netting, shotguns, propane-powered bangers and other audible bird scare devices, as well as traps and falcons, number among the most popular tools at growers’ disposal.
Published in Research
Using tunnels to provide a more consistent environment for raspberries and strawberries has been employed around the world, but less so in North America. Kathy Demchak from the Department of Plant Science at Penn State University has surveyed growers and conducted research on the use of tunnels in growing fresh-market strawberries and raspberries to help growers determine if the option is viable in their own field.
Published in Fruit
The quality of a potato harvest might have more to do with how seeds were stored than how they were treated in the field the previous year.

Alison Nelson, agronomist and researcher at Carberry’s Canada-Manitoba Crop Diversification Centre, says warming up seed before planting may have more impact on a processing crop than most in-season management of the seed crop the year before.

The AAFC researcher is studying how planting date, harvest date, moisture and storage of a seed crop might impact a daughter crop grown from those seeds. To test this, Nelson designed a multi-year trial first manipulating seed crop management, then returning with those seeds to measure changes in the processing crop the next year. | For the full story, CLICK HERE.
Published in Vegetables
When humans get bacterial infections, we reach for antibiotics to make us feel better faster. It’s the same with many economically important crops. For decades, farmers have been spraying streptomycin on apple and pear trees to kill the bacteria that cause fire blight, a serious disease that costs over $100 million annually in the United States alone.

But just like in human medicine, the bacteria that cause fire blight are becoming increasingly resistant to streptomycin. Farmers are turning to new antibiotics, but it’s widely acknowledged that it’s only a matter of time before bacteria become resistant to any new chemical. That’s why a group of scientists from the University of Illinois and Nanjing Agricultural University in China are studying two new antibiotics—kasugamycin and blasticidin S—while there’s still time.

“Kasugamycin has been proven effective against this bacterium on apples and pears, but we didn’t know what the mechanism was. We wanted to see exactly how it’s killing the bacteria. If bacteria develop resistance later on, we will know more about how to attack the problem,” says Youfu Zhao, associate professor of plant pathology in the Department of Crop Sciences at U of I, and co-author on a new study published in Molecular Plant-Microbe Interactions.

The bacterium that causes fire blight, Erwinia amylovora, is a relative of E. coli, a frequently tested model system for antibiotic sensitivity and resistance. Studies in E. coli have shown that kasugamycin and blasticidin S both enter bacterial cells through two transporters spanning the cell membrane. These ATP-binding cassette (ABC) transporters are known as oligopeptide permease and dipeptide permease, or Opp and Dpp for short.

The transporters normally ferry small proteins from one side of the membrane to the other, but the antibiotics can hijack Opp and Dpp to get inside. Once inside the cell, the antibiotics attack a critical gene, ksgA, which leads to the bacterium’s death.

Zhao and his team wanted to know if the same process was occurring in Erwinia amylovora.

They created mutant strains of the bacterium with dysfunctional Opp and Dpp transporters, and exposed them to kasugamycin and blasticidin S.

The researchers found that the mutant strains were resistant to the antibiotics, suggesting that Opp and Dpp were the gatekeepers in Erwinia amylovora, too.

Zhao and his team also found a gene, RcsB, that regulates Opp and Dpp expression. “If there is higher expression under nutrient limited conditions, that means antibiotics can be transported really fast and kill the bacteria very efficiently,” he says.

The researchers have more work ahead of them to determine how Opp/Dpp and RcsB could be manipulated in Erwinia amylovora to make it even more sensitive to the new antibiotics, but Zhao is optimistic.

“By gaining a comprehensive understanding of the mechanisms of resistance, we can develop methods to prevent it. In the future, we could possibly change the formula of kasugamycin so that it can transport efficiently into bacteria and kill it even at low concentrations,” he says. “We need to understand it before it happens.”

The article, “Loss-of-function mutations in the Dpp and Opp permeases render Erwinia amylovora resistant to kasugamycin and blasticidin S,” is published in Molecular Plant-Microbe Interactions [DOI: 10.1094/MPMI-01-18-0007-R]. Additional authors include Yixin Ge, Jae Hoon Lee, and Baishi Hu. The work was supported by a grant from USDA’s National Institute of Food and Agriculture.
Published in Research
Comparison of fungicide programs:

In 2016 and 2017, Cheryl Trueman compared several different cucumber downy mildew control programs in plots at the University of Guelph Ridgetown Campus.

Different product rotations included:
  • Bravo-only applied 6 times.
  • A high input strategy that focused on optimal control and resistance management: Orondis Ultra A+B; Torrent; Zampro; Orondis Ultra A+B; Torrent; Zampro.
  • A low-input strategy that focused on early control and resistance management, switching to lower-cost fungicides in the final weeks of harvest: Orondis Ultra A + B (plus Bravo); Torrent; Zampro; Bravo; Bravo; Bravo.
  • A single application of Orondis Ultra, applied early followed by the other targeted downy mildew fungicides (Orondis Ultra A + B; Torrent ; Zampro; Torrent; Zampro; Torrent).
  • Control – no fungicides applied.
Results indicate that the highest level of control was achieved using a high input three product rotation of Orondis Ultra A+B, Torrent and Zampro when downy mildew pressure was high in 2016.

Under these conditions final yields for both the high input and single Orondis Ultra (in rotation) were both significantly higher than the Bravo only programs and yield for the high input program were significantly higher than all other treatments.

When pressure was moderate in 2017, the high input and single Orondis Ultra in rotation program were very effective. All fungicide programs except Bravo only increased both fruit number and yield by weight.
Published in Vegetables
Ontario’s average farmland values gained steam in 2017 while the Canadian average increase held relatively steady, a sign of a strong and stable agriculture economy, according to J.P. Gervais, chief agricultural economist for Farm Credit Canada (FCC).

The average value of Canadian farmland increased 8.4 per cent in 2017, following a gain of 7.9 per cent in 2016. Although average farmland values have increased every year since 1993, recent increases are less pronounced than the 2011 to 2015 period that recorded significant average farmland value increases in many different regions.

"With the steady climb of farmland values, now is a good time for producers to review and adjust their business plan to reflect variable commodity prices and slightly higher interest rates, assess their overall financial position and focus on increasing productivity,” Gervais said. “It’s also a good idea to have a risk management plan in place to protect your business against unforeseen circumstances and events.”

In Ontario, average farmland values increased by 9.4 per cent in 2017, following gains of 4.4 per cent in 2016 and 6.6 per cent in 2015.

While Saskatchewan, Ontario and Nova Scotia reported the largest average increases, four provinces – British Columbia, Alberta, Manitoba and Prince Edward Island saw a smaller increase from the previous year.

Quebec and New Brunswick both showed increases that were fairly close to the national average, while Newfoundland and Labrador didn’t have enough transactions to fully assess farmland values in that province.

Some of last year’s average farmland value increase may also be a result of timing as most provinces recorded a faster pace of increase in the first six months of the year while interest rate increases didn’t occur until the latter half of 2017.

Recent increases in borrowing costs and expectations of further increases could cool the farmland market in 2018, according to Gervais.

FCC’s Farmland Values Report highlights average changes in farmland values – regionally, provincially and nationally. This year’s report describes changes from January 1 to December 31, 2017 and, for the first time, provides a value range in terms of price per acre.

“It’s important to remember that farmland prices can vary widely within regions due to many local factors that can influence how much value a buyer and seller attach to a parcel of land,” Gervais said.

He also stressed that every farm operation is unique and there may be a strong business case for buying more land, but not without carefully weighing the risks and rewards.

“Farm operations need to be cautious in regions where the growth rate of farmland values has exceeded that of farm incomes in recent years,” Gervais said.

“The good news is Canadian farms are generally in a strong financial position when it comes to net cash income and their balance sheets,” he said.

To view the 2017 FCC Farmland Values Report and historical data or register for the free FCC webinar on May 2, visit www.fcc.ca/FarmlandValues. For more information, visit: fcc.ca or follow us on Facebook, LinkedIn, and on Twitter @FCCagriculture.
Published in Provinces
In the past 10 years, the invasive fruit fly known as the spotted-wing drosophila has caused millions of dollars of damage to berry and other fruit crops.

Biologists at the University of California San Diego have developed a method of manipulating the genes of an agricultural pest that has invaded much of the United States and caused millions of dollars in damage to high-value berry and other fruit crops.

Research led by Anna Buchman in the lab of Omar Akbari, a new UC San Diego insect genetics professor, describes the world’s first “gene drive” system—a mechanism for manipulating genetic inheritance—in Drosophila suzukii, a fruit fly commonly known as the spotted-wing drosophila.

As reported in the Proceedings of the National Academy of Sciences, Buchman and her colleagues developed a gene drive system termed Medea (named after the mythological Greek enchantress who killed her offspring) in which a synthetic “toxin” and a corresponding “antidote” function to dramatically influence inheritance rates with nearly perfect efficiency.

“We’ve designed a gene drive system that dramatically biases inheritance in these flies and can spread through their populations,” said Buchman. “It bypasses normal inheritance rules. It’s a new method for manipulating populations of these invasive pests, which don’t belong here in the first place.”

Native to Japan, the highly invasive fly was first found on the West Coast in 2008 and has now been reported in more than 40 states.

The spotted wing drosophila uses a sharp organ known as an ovipositor to pierce ripening fruit and deposit eggs directly inside the crop, making it much more damaging than other drosophila flies that lay eggs only on top of decaying fruit. Drosophila suzukii has reportedly caused more than $39 million in revenue losses for the California raspberry industry alone and an estimated $700 million overall per year in the U.S.

In contained cage experiments of spotted wing drosophila using the synthetic Medea system, the researchers reported up to 100 percent effective inheritance bias in populations descending 19 generations.

“We envision, for example, replacing wild flies with flies that are alive but can’t lay eggs directly in blueberries,” said Buchman.

Applications for the new synthetic gene drive system could include spreading genetic elements that confer susceptibility to certain environmental factors, such as temperature.

If a certain temperature is reached, for example, the genes within the modified spotted wing flies would trigger its death. Other species of fruit flies would not be impacted by this system.

“This is the first gene drive system in a major worldwide crop pest,” said Akbari, who recently moved his lab to UC San Diego from UC Riverside, where the research began. “Given that some strains demonstrated 100 per cent non-Mendelian transmission ratios, far greater than the 50 percent expected for normal Mendelian transmission, this system could in the future be used to control populations of D. suzukii.”

Another possibility for the new gene drive system would be to enhance susceptibility to environmentally friendly insecticides already used in the agricultural industry.

“I think everybody wants access to quality fresh produce that’s not contaminated with anything and not treated with toxic pesticides, and so if we don’t deal with Drosophila suzukii, crop losses will continue and might lead to higher prices,” said Buchman. “So this gene drive system is a biologically friendly, environmentally friendly way to protect an important part of our food supply.”

Co-authors of the paper include: John Marshall of UC Berkeley, Dennis Ostrovski of UC Riverside and Ting Yang of UC Riverside and now UC San Diego. The California Cherry Board supported the research through a grant.
Published in Research
Developed by Biobest, Flying Doctors - bumblebees that pollinate flowers while at the same time delivering a ‘medicine’ to the plant - have been available since 2013. Highly innovative and efficient, these bumblebees kill two birds with one stone.

Fruit grower Bart Van Parijs, from Oeselgem, Belgium, has conducted a trial in open field-grown raspberries using the biofungicide Prestop 4B as the ‘medicine’ against Botrytis.

Bart first heard about this technique at a seminar a few years ago. “With most of the results relating to protected crops I was curious to know what the effects would be in open field raspberry crops”, explains Bart Van Parijs, who owns the 12-hectare biological fruit company, Purfruit in Oeselgem. This enterprising operation grows up to 15 species of fruit, has a pick your own fruit farm, a terrace and a shop. It also regularly welcomes groups and classes.

Protection against Botrytis
A biological grower as Bart Van Parijs cannot use any chemical products to protect their crops against Botrytis − which causes fruit to rot. As the fungus remains latent during flowering, the damage only becomes visible during harvest or storage.

The biofungicide Prestop 4B contains the beneficial fungus Gliocladium catenulatum J1446. Using Flying Doctors, the bumblebees continuously carry the biofungicide to the flowers during pollination, affording protection against Botrytis and preventing the fruit from being harmed.

Beneficial fungus present
Biobest deployed the Flying Doctors with Prestop 4B in the raspberry crops in spring. At the end of May, flowers were collected from plots that were, and others that were not, pollinated by Flying Doctors.

The flowers were examined for the presence of Gliocladium. The beneficial fungus was found in both plots. The fact that a certain percentage of Gliocladium was also found on the untreated crop is due to the distance between the plots. Since they were not far apart, some bumblebees also pollinated the plot that did not receive any treatment. Still, the plot treated by Flying Doctors showed a much higher presence of Gliocladium – namely 80 per cent.

No fruit rot after storage
During harvest in early July, Biobest performed a new trial: raspberries from plots that were and others that were not pollinated were harvested and stored at a temperature of 10°C.

Biobest researcher Soraya França explained, “After two weeks there was no sign of fruit rot in the raspberries treated by Flying Doctors. On the other hand, 30 per cent of the raspberries from the untreated area were affected.

Extended shelf life is positive
Commenting on the results, Bart Van Parijs said, “the shelf life of raspberries is limited, especially in humid periods. Thanks to Flying Doctors with Prestop 4B, raspberries can be kept longer in the fridge, which is reassuring. During humid periods, I normally advise my fruit garden customers to consume the fruit they have picked the next day at the latest. This year I could confidently say that the berries could be kept a few days before being eaten. I will be using Flying Doctors again this year.”
Published in Fruit
Alberta farms are seeing more opportunities to sell their products directly to consumers, as more people want to know where their food comes from and how it is produced.

Alberta Agriculture and Forestry (AF) has been tracking local food demand trends in various direct to consumer market channels, including on-farm retail, farmers’ markets, and community supported agriculture (CSA) since 2004.

“Local food sales through direct to consumer market channels have more than doubled since 2008,” says Christine Anderson, local foods specialist with AF. “We are expecting sales from this past year to reach $1.2 billion.”

The Study of Local Food Demand in Alberta 2016 found that food spending at farmers’ markets, farm retail, and restaurants serving local food in Alberta exceeded $1.5 billion in that year.

The 2016 Census of Agriculture included a question about farms selling food directly to consumers. It found that about five per cent, or 2,062 farms in Alberta, sold food directly to consumers, below the national average of 12.6 per cent.

“That breaks down to one Alberta farm selling directly to consumers for every 1,972 Albertans,” says Anderson. “When compared to the national average of one direct to consumer farm for every 1,434 people, there is a clear opportunity for new farms to enter the direct sales market in Alberta.”

Of those 2,062 Alberta farms selling directly to consumers, 35 per cent were new entrants to direct to consumer market channels. Beef cattle farms represented the highest proportion of new entrants at 21 per cent, followed by apiculture at 12 per cent, and animal combination farming at 11 per cent.

More than two-thirds of the new entrants were small farms with annual sales less than $50,000, 18 per cent were medium-sized, and 10 per cent were large with sales in excess of $250,000.

Most farms, or 85 per cent, sold food and products directly to consumers either at a farm gate, stand, kiosk, or U-pick operation. About 20 per cent sold their product at farmers’ markets, and six per cent through CSA.

“Census data indicates that direct marketing farms yielded higher than average profitability compared to farms that did not sell directly to consumers,” explains Anderson. “The profitability ratios of some direct marketing farms were further improved if they sold value-added products through farmers’ markets or CSAs.”

Farms marketing directly to consumers also showed a higher average of gross farm receipts to farm area at $442 per acre, compared to farms that did not sell directly to consumers with $349 per acre.

“Direct marketing farms also revealed a higher percentage of female operators, at 38 per cent, than other types of farms, at 31 per cent,” notes Anderson. “Interestingly, Alberta has more female direct marketing farm operators than the national average, which is 36 per cent.”

The data also showed that young operators who were under the age of 35 were more involved in farm direct marketing in Alberta: Nine per cent compared to eight per cent province-wide in all agriculture operations.

For a more information on opportunities in direct to consumer marketing, visit Explore Local or contact Christine Anderson local foods specialist with Alberta Agriculture and Forestry.
Published in Marketing

The Agriculture and Agri-Food Canada research centre in Kentville, N.S., is undertaking a renovation of a lab workspace of 400-square metres to accommodate new grape and wine research.

A Cambridge Nova Scotia construction company has been awarded a contract to renovate an existing pilot plant space in the research centre. The space will be retrofit and converted into a wine research lab.

The development is part of a multi-dimensional research approach at the Kentville centre in support of Nova Scotia grape growers and vintners.

A new scientist, food-wine chemist Shawna MacKinnon has been hired to run the lab.
There will be areas where grapes grown in the local vineyards will be brought in, evaluated and crushed for use in wine production, processing and bottling.

The new facility will include spaces for the fermentation of white and red wines at a wide range of temperatures and volumes, a wine cellar, and a room where wine, created at the centre, can be tasted, tested and sampled by a panel.

The goal is to improve agricultural productivity and support the Nova Scotia government’s goal of increasing vine acreage from 800 acres to 2,000 acres by 2020.

The renovation and installation work is expected to be completed later this year.

The renovation will build on a $400,000 research project in support of the local grape and wine sector currently underway at the Kentville centre on grape varieties, growing techniques and conditions.

To date 70 sites, about 1,000 acres of N.S. vineyards have been mapped for insect pests and grapevine viruses and bacteria. Soil, topography, and climate are also being assessed to see how these factors affect wine taste, flavour and wine quality. Samples were taken from vineyards throughout the province.

A monitoring system is in place to measure the effect of cold weather on grape vines and wine grape winter hardiness. A two-acre research vineyard has been established to study local and European grape varieties.

This vineyard will be used to further analyze factors that influence vine health, hardiness, and wine quality. Information on grape maturity prior to harvest is being collected. A light-emitting hand-held device is being evaluated for its ability to pinpoint grape ripeness to identify the best harvest time which is a key factor in the production of high quality wines.

Published in Research
Page 1 of 22

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Carrot Fest
Fri Aug 17, 2018
Potato Field Day in Elora
Wed Aug 22, 2018 @10:30AM - 02:00PM
Ontario Garlic Workshop
Wed Sep 05, 2018 @ 9:30AM - 03:30PM

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.