Research
August 18, 2017 - The Canadian Agricultural Human Resource Council (CAHRC) recently held an AgriWorkforce Roundtable to discuss challenges and possible solutions to address the critical agricultural labour shortage in Canada.

Participants included primary producers, processors, retailers, policy makers and academics – all putting their heads together to come up with new solutions to what is becoming a persistent problem; how do you attract and retain farm workers?

Marc Smith, retired Assistant Director of the New York State Agricultural Experiment Station in Geneva and Senior Extension Associate opened the discussion with an international perspective on shared agricultural labour challenges among the United States and Canada.

Smith started off by identifying several trends in the U.S. agricultural labour climate:
• Regardless of government policy, people seeking employment in agriculture will be scarce.
• Economic and other motivations to develop and adopt labour-saving technologies are growing.
• Political and economic pressures will force minimal wages higher in many states.
• Perception of agriculture as an unattractive field for careers is a perennial challenge.

The consequences of these U.S. agricultural labour trends has resulted in a 20 per cent decline in available agricultural workers between 2002-14; an annual loss of US $3.1B to fruit and vegetable production due to labour shortages; and a declining U.S.-born population willing to work on farms.

In Canada the gap between labour demand and the domestic workforce in agriculture has doubled from 30,000 to 59,000 in the past 10 years and projections indicate that by 2025, the Canadian agri-workforce could be short workers for 114,000 jobs. This was a key finding of Labour Market Information (LMI) research by CAHRC entitled Agriculture 2025: How the Sector’s Labour Challenges Will Shape its Future. The LMI research also revealed that Canadian primary agriculture had the highest industry job vacancy rate at seven per cent - higher than any other industry in Canada. This resulted in $1.5-billion in lost sales.

Poor worker compensation is often cited as the primary reason for low interest in working on farms. However, Smith notes that agricultural wages in the U.S. have gone up faster than any other sector in the past 10 years with the median wage being $13.23/hr ($17.76 Cdn) as of April 2017. In Canada, farm hourly rates averaged $17.50/hr in 2016.

Smith advocates that wages alone are not the issue but rather what is needed is a coordinated effort to improve labour policy, on-farm workforce needs, and farm practices.
Smith suggests that farmers need to develop realistic policies that attract and retain workers. Investment in leadership and management capacity within the agricultural industry is also needed to encourage innovation, research and development for long-term solutions to the already critical agricultural workforce.

It is not enough to simply pay required wages and comply with regulations. Employee compensation should also include how workers are treated and have their needs accommodated such as providing housing, access to the internet, transportation, communications in their own language, offering English as a second language training, job training, flexible hours, and creating a sense of community. It is important to make workers feel welcomed, valued and confident.

Finally, modifying farm practices to reduce the need for labour is another way to reduce on-farm workforce pressures. This may include adopting new technology that negates the need for human workers, changing crop mixes to less labour intensive commodities, or moving production operations to streamline efficiency.

To help attract and retain a motivated workforce, CAHRC has developed several tools to help farm managers including: AgriSkills – customizable and commodity specific on-farm training programs; Agri HR Toolkit – an online resource guide and templates to address the HR needs of any business; and Agri Pathways – promoting careers in agriculture. For more information on these and other CAHRC offerings visit www.cahrc-ccrha.ca.

In the meantime, Smith says producers should champion farmers that are doing a great job with their workers and get the word out that agriculture is a rewarding and fulfilling career with a strong future.
Published in Business & Policy
August 16, 2017, Ottawa, Ont. - Canadian fruit growers need the best varieties of plants to be successful. In the case of Canadian strawberry growers, they grow the best varieties of plants, which foreign buyers demand. The import and export of fruit plants, however, must go through the Canadian Food Inspection Agency (CFIA) to test for potentially devastating plant viruses. Currently, this testing and quarantine process takes an average of three years to complete, significantly hampering the speed of trade.

Today, the Honourable Lawrence MacAulay, Minister of Agriculture and Agri-Food, announced that the CFIA will lead two projects worth $500,000 that use new DNA-based technologies to reduce the quarantine testing time, helping to boost trade and economic competitiveness in the $240 million Canadian fruit tree industry.

"Together with provincial partners and industry, our government is making the investments in innovative science that enables agriculture to be a leading growth sector of Canada's economy. Together we can help meet the world's growing demand for high-quality, sustainable food and help grow our middle class," Minister MacAulay, said. 

The first project will dramatically shorten the testing period of seeds, cuttings and bulbs imported into Canada to grow new varieties of plants. With this funding, scientists will use DNA technology to test for all viruses associated with imported plants to get an early indication of any plant diseases present. This approach could reduce the quarantine testing time by up to two and a half years.

The second project streamlines the testing of strawberry plants. Traditionally, multiple tests for viruses are required before exporting strawberry plants to foreign markets. This project will test for multiple viruses in one single test, dramatically reducing the time and cost to get plants to market.

Funding for these projects is provided through a partnership between the CFIA, Genome British Columbia, Summerland Varieties Corporation, Phyto Diagnostics, the British Columbia Cherry Association, and Vineland Research and Innovations Centre.

"Canadian import/export markets will be stronger and more competitive because of these genomics-based tools. Early detection of pathogens and viruses is a vital outcome of genomics and it is being applied across many key economic sectors." Dr. Catalina Lopez-Correa, Chief Scientific Officer and Vice President, Genome British Columbia said. 
Published in Fruit
August 2, 2017, Ottawa, Ont. - Domestic subsidies in many countries encourage production increases that result in considerable surpluses and lower prices on global markets, according to a new study released today by the Canadian Agri-Food Policy Institute (CAPI).

The study also found these production increases fuel highly unsustainable production practices and the misallocation of natural resources.

The comprehensive study, Understanding Agricultural Support, was prepared by Al Mussell, Douglas Hedley, Kamal Karunagoda, and Brenda Dyack of Agri-Food Economic Systems, with support from the Canadian Federation of Agriculture and Ontario Ministry of Agriculture, Food and Rural Affairs. The report seeks a better understanding of the impacts of domestic income support programs in key markets and competitors on the competitiveness of Canada's agriculture and agri-food sector.
Published in Research
August 2, 2018, Guelph Ont. – Reducing food waste is not just the right thing to do; it’s also a way to improve business efficiency and profitability.

That’s the outcome of a food waste reduction project spearheaded by the Ontario Produce Marketing Association (OPMA) with funding provided by Growing Forward 2.

OPMA teamed up with Value Chain Management International (VCMI) to develop a workbook, prepare several case studies, and roll out a series of workshops to help OPMA members wrap their heads around how they can reduce waste in their businesses while making more money in the process.

“This is to identify opportunities for improvement in the value chain; if you improve process, you automatically reduce waste in areas like labour, energy, product, packaging and transportation,” project lead Martin Gooch told participants in the Agricultural Adaptation Council’s summer tour on June 14. “This will position the Ontario produce industry as a leader in reducing food waste, but it’s also a business opportunity for the entire value chain.”

The first Ontario industry case study was recently released, with three more nearing completion. The case study with a progressive Ontario potato supplier, EarthFresh Foods, clearly shows the business opportunity in addressing food waste: a 29 per cent increase in grade-out of potatoes results in a 74 per cent increase in producer margin.

Most of the produce loss can be directly attributed to production practices, storage and handling, but addressing the problem requires a slight shift in thinking for farmers.

“Farmers often look at what their production per acre is, but don’t connect that with how much is actually being marketed and that’s where they are paid,” he said. “If you can prevent that 29 per cent loss of product, that’s an overall $17,000 increase in return on a single trailer load of potatoes. Businesses also benefit from incurring lower costs.”

To date, close to 100 people have participated in the waste reduction workshops developed by VCMI. The accompanying workbook uses a whole value chain perspective, and was designed to be an easy to use tool for businesses small and large with 10 easy steps to follow.

“You don’t need to have a PhD in math or be a statistical genius to improve your business,” Gooch said. “It’s about identifying where the opportunities are, what the causes are, and how do we address those causes in a constructive way.”

Overall, participants come away from the workshop with solutions they can use to improve performance in their businesses and no longer simply accept waste and “shrink” as part of doing business. Media interest in the initiative has been strong with global coverage, and other sectors, like meat processing, are making inquiries about applicability of the program to their industries.

More information is available at www.theopma.ca.

This project was funded in part through Growing Forward 2 (GF2), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario.
Published in Research
July 27, 2017, Vineland, Ont – It’s been 10 years since a new horticultural research facility in Niagara Region was launched as the Vineland Research and Innovation Centre (Vineland).

Since then, Vineland has been turning heads across Canada and internationally with its needs-based innovations. The organization reflects the entire horticulture value chain from farmers to consumers, and they’re not afraid to take big steps to help the industry solve problems.

“We started by understanding what needed to be done and how we needed to work to make a difference, which is real results with real impact from acres in the field to shelf space in the store,” says Vineland’s CEO, Dr. Jim Brandle.

Addressing the labour intensive nature of horticultural production was a need identified early on. Today, machines designed in Vineland’s robotics program and built in Ontario are coming into use in fruit and vegetable greenhouses, which Brandle says will go a long way in helping to keep growers competitive, as well as boost the local manufacturing and automation sector.
Sweet potatoes, okra and Asian eggplant are offering new market opportunities for growers and consumers eager to eat more locally produced food.

And Vineland’s rose breeding program made a big splash earlier this year when its Canadian Shield rose – a trademarked low-maintenance and winter hardy variety bred in Canada – was named Flower of the Year at Canada Blooms.

Another significant milestone was the construction of the largest, most modern horticultural research greenhouse in North America with commercial-scale height and growing rooms dedicated to horticulture, which opened in 2016 and was built around the needs of Canada’s greenhouse vegetable and flower growers.“Today, we’re commercializing innovations, from the Canadian Shield rose to new apple and pear varieties,” Brandle says. “We are having the kind of impact that we sought in those early days.”

Natural ways to control greenhouse pests – called biocontrols – are making a real difference to flower growers and a new technology that can identify genetic variants for traits in all plants has just been spun-off into a for-profit company.

“We’re creating a reputation and that alone is an achievement because we’re the new kid on the block,” he says. “We have a ton of good people with and around the organization and on our board who are making this happen.”Vineland is an important partner to the horticulture industry, according to Jan VanderHout, a greenhouse vegetable grower and Chair of the Ontario Fruit and Vegetable Growers’ Association.

“They are very good at asking us what we want and taking a whole value chain approach to research and innovation,” VanderHout says. “You need the right facilities and expertise and Vineland fills that need to the benefit of the industry as a whole.”

Looking to the future, both Brandle and VanderHout predict that cap and trade pressure and high energy costs will result in more work around energy use and carbon footprint reduction.And Vineland’s consumer-focused approaches will continue to drive new innovation, from high flavour greenhouse tomatoes to Ontario-grown apple varieties.

“We will further lever consumer-driven plant breeding and work with the intent around pleasing consumers and trying to understand what they want so we can build that into our selection criteria,” Brandle says.
Published in Profiles
July 26, 2017, Ontario - Stemphylium leaf blight (Stemphylium vesicarium) of onion starts as yellow-tan, water-soaked lesions developing into elongated spots. As these spots cover the entire leaves, onions prematurely defoliate thereby reducing the yield and causing the crop to be more susceptible to other pathogens.

Stemphylium was first identified in Ontario in 2008 and has since spread throughout the Holland Marsh and other onion growing areas in southwestern Ontario.

Stemphylium leaf blight can sometimes be misdiagnosed as purple blotch (Alternaria porri), as they both have very similar symptoms initially. Purple blotch has sunken tan to white lesions with purple centers while Stemphylium tends to have tan lesions without the purple centers.

Stemphylium spores are dispersed by wind. Spore sampling at the Muck Crops Research Station using a Burkard seven-day spore sampler detected an average of 33 spores/m3 in 2015 and seven spores/m3 in 2016.

In ideal conditions, leaf spot symptoms occur six days after initial infection. Stemphylium tends to infect dead tissue or wounds, often as a result of herbicide damage, insect feeding or from extreme weather.

Older onion leaves are more susceptible to infection than younger leaves and symptoms are traditionally observed after the plants have reached the three- to four-leaf stage.

Over the last few years, Botrytis leaf blight (Botrytis squamosa) has become less of an issue and has been overtaken by Stemphylium as the most important onion disease — other than maybe downy mildew.

This may be because the fungicides used to target Stemphylium are likely managing Botrytis as well. Since Stemphylium can be so devastating and hard to control, fungicides are now being applied earlier in the season which may be preventing Botrytis to become established.

Botrytis squamosa overwinters as sclerotia in the soil and on crop debris left from the previous year and infects onions in mid-June when temperatures and leaf wetness are favourable for infection. In the Holland Marsh, Stemphylium lesions were first observed on June 29, 2015 and July 7, 2016.

The primary method of management is through foliar fungicides such as Luna Tranquility, Quadris Top and Sercadis. Keep in mind that Sercadis and Luna Tranquility both contain a group 7 fungicide so remember to rotate and do not make sequential applications.

The effectiveness of these fungicides in the future depends on the spray programs you choose today. There are already Stemphylium isolates insensitive to several fungicides in New York so resistance is a real and very serious issue with this disease.

Remember to rotate fungicide groups with different modes of actions to reduce the possibility of resistance. A protective fungicide is best applied when the onion crop has reached the three-leaf stage, however it may not be necessary in dry years.

Research is currently being conducted at the Muck Crops Research Station to improve forecasting models to identify the optimal timing for commercial growers to achieve good control.

BOTCAST disease forecasting model is available in some areas of Ontario to help growers predict the activity of the disease. Warm, wet weather between 18-26°C is most favourable for disease development. Regular field scouting is still the best method to assess disease levels.

Plant spacing that permits better air movement and irrigation schedules that do not extend leaf wetness periods may be helpful in some areas. Recent work at the Muck Crops Research Station has shown that spores increase two to 72 hours after rainfall with eight hours of leaf wetness to be optimal for the pathogen. Irrigate overnight if possible so by morning the leaves can dry out and you don’t prolong that leaf wetness period.

To lower inoculum levels it is crucial to remove or bury cull piles and to bury leaf debris left from the previous year’s crop through deep cultivation. Stemphylium of onion has many hosts including leeks, garlic, asparagus and even European pear.

Take the time to rogue out volunteer onions or other Allium species in other crops nearby and remove unnecessary asparagus or pear trees to lower inoculum levels. As with any other foliar disease of onion, it is beneficial to rotate with non-host crops for three years.

To prevent the development of resistance, it is essential to always rotate between different fungicide groups and/or tank mix with a broad spectrum insecticide. Current products registered for Stemphylium leaf blight of onion are listed by fungicide group below:

Group 7 - Sercadis

Group 7/9 - Luna Tranquility

Group 11/3 - Quadris Top
Published in Diseases
July 25, 2017 – Ottawa, Ont. - A Food Policy for Canada will set a long-term vision for the health, environmental, social, and economic goals related to food, while identifying actions we can take in the short-term.

We have reached out to Canadians to help shape the policy because we know that by working together, we can build a food policy that is a shared vision to address food-related opportunities and challenges in Canada.

A strong response from across the country has prompted Agriculture and Agri-Food Minister, Lawrence MacAulay, to encourage even more citizens to have their say.

With over 22,000 Canadians having completed the online survey launched on May 29, the comment period has been extended to August 31, 2017, to allow even more Canadians to share their views on A Food Policy for Canada.

The online survey is one of a number of consultation activities planned to engage with Canadians on this issue.

The Government of Canada is also encouraging community leaders and organizations to continue having food policy discussions in their own regions across the country. A toolkit is now available online that can help organizers host discussions and gather feedback on what matters most when it comes to food policy.

Following a successful food policy summit held in Ottawa in June, the Government of Canada will be holding regional engagement sessions across Canada throughout August and September. Stakeholders, Indigenous groups, experts, and key policy makers will be invited to attend these sessions and share their views on the development of A Food Policy for Canada.

A Food Policy for Canada, which will be the first-of-its-kind for Canada, will help address food issues and pursue opportunities in areas related to:

· increasing access to affordable food;
· improving health and food safety;
· conserving our soil, water, and air; and
· growing more high-quality food.
Published in Federal
July 24, 2017 - St. John's - The Government of Canada is committed to working with agricultural industry partners and the private sector to develop new risk management tools that help farmers to be resilient and grow their businesses.

Minister of Agriculture and Agri-Food, Lawrence MacAulay, announced a $365,291 investment for the Newfoundland and Labrador Federation of Agriculture (NLFA) to develop a comprehensive consultation process to identify all the risks associated with farming in the province, potentially including production, financial, labour, market, transportation and climate change risks.

Once completed, the risk assessment will form the basis for future programs and initiatives that will improve the resilience and growth of the Newfoundland and Labrador agriculture sector.
Published in Federal
July 20, 2017, Ontario - Grapes and apples are high-value crops that require adequate water to grow properly. low water conditions such as drought stress have a negative impact on grapes and apples, lowering yields and reducing fruit quality.

The Water Adaption Management and Quality Initiative project is using a suite of technology to determine soil moisture for grapes, apple and tender fruit and improve recording and monitoring of natural and artificial irrigation events to create best management practices and improve water conservation and efficiency while increasing yields. For more, check out the video above!
Published in Irrigating
July 19, 2017 - In 2016, Health Canada’s Pest Management Regulation Agency (PMRA) completed a re-evaluation of carbaryl, a common chemical thinning regime for Canadian apple producers.

The re-evaluation led to some changes and restrictions on the product label. This included eliminating its use in residential areas plus as an insecticide on some fruit and vegetable crops.

Apple thinning has remained on the label but at reduced rates:
  • Maximum seasonal rate of 1.5 kg a.i./ha and an REI of 14 days for hand thinning [high-density trellis production such as spindle or super spindle]
  • Maximum seasonal rate of 1.0 kg a.i./ha and an REI of 17 days for hand thinning [dwarf, semi-dwarf and full-sized trees]
As a result, research is underway to discover a new thinning regime for Canadian apple producers.

Researchers from Cornell Cooperative, CCE Lake Ontario Fruit Program educator and the Lamont Fruit farm conducted a three-year mechanical thinning trial. Watch above for more!
Published in Chemicals
July 18, 2017, Ontario - New storage bins are currently being tested that could extend the shelf life of fresh Ontario produce.

Dr. Jennifer DeEll, frest market quality program lead with Ontario Ministry of Agriculture, Food and Rural Affairs, is currently leading a two-year project to test the effectiveness of the Janny MT modified atmosphere storage bins on Ontario fruits and vegetable crops.

Check out the video for more!
Published in Storage
July 14, 2017, Gainesville, FL – Some people love to eat a juicy, seedless watermelon for a tasty, refreshing snack during a hot summer day. University of Florida scientists have found a way to stave off potential diseases while retaining that flavour.

Consumers increasingly savour the convenience and taste of seedless watermelons, said Xin Zhao, a UF Institute of Food and Agricultural Sciences associate professor of horticultural sciences and lead author of a new study examining rootstocks, flavour and texture of watermelons.

Many growers produce seedless cultivars because that’s what consumers want, and it’s important to maintain the fruit’s yield and taste, as seedless cultivars might be more susceptible to fusarium wilt, a major soil-borne disease issue in watermelon production, Zhao said.

For the study, UF/IFAS researchers grafted seedless watermelon onto squash rootstocks to ward off soil-borne diseases, such as fusarium wilt. In plant grafting, scientists call the upper part of the plant the scion, while the lower part is the rootstock. In the case of vegetable grafting, a grafted plant comes from joining a vigorous rootstock plant – often with resistance or tolerance to certain soil-borne pathogens – with a scion plant with desirable aboveground traits.

Grafting is a useful tool to manage soil-borne diseases, but in this study, researchers were concerned that if they grafted watermelon onto squash rootstocks, they might reduce its fruit quality and taste. Overall, study results showed no loss in taste and major fruit quality attributes, like total soluble solids and lycopene content, Zhao said. Consumers in UF taste panels confirmed the flavour remained largely consistent between grafted and non-grafted plant treatments under different production conditions.

Furthermore, said Zhao, compared with the non-grafted seedless watermelons, plants grafted onto the squash rootstocks exhibited a consistently higher level of flesh firmness.

“We are continuing our grafted watermelon research to optimize management of grafted watermelon production, maximize its full potential and seek answers to economic feasibility,” she said.

Still to come is a paper that specifically tells researchers whether they warded off fusarium wilt under high disease pressure, Zhao said. Grafting with selected rootstocks as a cultural practice is viewed as an integrated disease management tool in the toolbox for watermelon growers to consider when dealing with fusarium wilt “hot spots” in the field, she said. However, most squash rootstocks are generally more susceptible to root-knot nematodes, a potential challenge with using grafted plants. Other UF/IFAS researchers are tackling that issue.

The new UF/IFAS study is published in the Journal of the Science of Food and Agriculture.
Published in Research
July 14, 2017, Durham, NH – Researchers with the New Hampshire Agricultural Experiment Station at the University of New Hampshire have succeeded in quadrupling the length of the strawberry growing season as part of a multi-year research project that aims to benefit both growers and consumers.

Strawberry season in the Northeast U.S. traditionally lasts only four to six weeks. However, researchers working on the multi-state TunnelBerries project were picking day-neutral strawberries in Durham last November. Last year, researchers harvested strawberries grown in low tunnels for 19 consecutive weeks from mid-July through the week of U.S. Thanksgiving. They also found that the low tunnels significantly increased the percentage of marketable fruit, from an average of about 70 per cent to 83 per cent.

Now in its second year, the TunnelBerries research project is being conducted at the UNH Woodman Horticultural Research Farm. It is part of a larger, multi-state U.S. Department of Agriculture-funded initiative to optimize protected growing environments for berry crops in the upper Midwest and northeastern United States. UNH’s component is focused on improving berry quality and the role day-neutral varieties may play in extending the length of strawberry season in the Northeast.

“[Strawberries] are a very valuable early season crop for farmers,” said graduate student Kaitlyn Orde, who is working with experiment station researcher Becky Sideman on the project. “Unfortunately, though, this season is very brief, limiting the period in which … producers are able to meet consumer demand for the fresh fruit. A longer strawberry season is good for both grower and consumer.”

The UNH project consists of two parts. Researchers want to determine the yield and fruiting duration of day-neutral strawberry varieties. Day-neutrals are a different plant-type than the traditional June-bearers; day-neutrals (or ever-bearing) have been shown to fruit continuously for four to six months in the region. In addition, day-neutrals fruit the same year they are planted, which is not the case with June-bearers.

“We are growing one day-neutral variety on three different mulches to determine if there are any differences in total production, production patterns, runner production, and fruit characteristics among the mulches,” Orde said. “We also are investigating the role plastic covered low-tunnels play in improving berry quality, and what the microenvironment is within low tunnels, especially late season. To do this, we are evaluating five different plastics for the low tunnels.”

Researchers in Maryland, Minnesota, North Carolina, and New York have conducted preliminary research on similar systems. There also are limited growers in the Northeast who already cultivate day-neutral varieties, and even fewer who have experimented with low-tunnels in combination with the strawberry crop.

For more information, visit www.tunnelberries.org.
Published in Research
July 11, 2017, Waterloo, Ont. – Good lighting can do more than illuminate your salad. It can actually tell you the quality of those soon-to-be ingested leafy greens.

With the right technology, light can be used to measure the quality of food in real-time. When it comes to food processing, that can help make for more efficient and less wasteful production systems.

With funding through Growing Forward 2 (GF2), Waterloo’s P & P Optica has patented a system allowing them to incorporate hyperspectral imaging technology into a fast-paced, food processing environment.

“We developed what we call PPO Smart Imaging, which is a process that uses light to analyze the chemical makeup of a specific food product,” said Kevin Turnbull, Vice President of Sales for P & P Optica.

“The science lets us see what products make the grade, and which ones don’t. Incorporating it into a food production system can help processors improve their grading and sorting efficiency,” he said.

Hyperspectral imaging (also called chemical imaging) involves illuminating an object with bright light. Special cameras pick up hundreds of different colour variations as the object passes under the light – conventional consumer cameras work at a much, much lower level – and generate data from those colours. In turn, that data indicates what the object is made out of and what quality the material is.

Turnbull and his colleagues are now working with local spinach processor Ippolito Produce Ltd. and Conestoga College to operationalize their technology in a working environment. Similar technology has been used by P & P Optica in recycling and in the biomedical field, but this is the first time it has been brought to the food world.

A major benefit, according to Turnbull, is significantly reducing food waste.

“Hand-sorting is either ineffective or impractical, so processors often use limited technologies like primitive vision, X-ray or metal detectors,” he said. “Still, waste and foreign material contamination persists, sending good food to the waste pile and potentially allowing foreign materials to reach the consumer. Our system will address that.”

While Turnbull does not yet know the exact impact his company’s method will have, he said they are anticipating “significant waste reduction.”

“Even if only 25 per cent less spinach is thrown out, that will translate to hundreds of thousands of dollars every year,” he said.

The prototype from P & P Optica was just recently installed at the Ippolito plant in Burlington. Now the companies are working closely to actively test and fine-tune the system.

According to Turnbull, the goal is to improve the system so it can be can be brought to other food processors – including companies managing meat and animal-based products – as a workable solution for inline food grading and safety.

While the field test is not slated to finish until later in the year, Turnbull said they have already seen growing interest in the technology.

“Riga Farms, which is a carrot producer from the Holland Marsh, and Earth Fresh Foods, a Burlington-potato company, are also partners in the project. When we applied to Growing Forward 2, they jumped onboard and made their own investment contributions,” he said. “They have enthusiastically supported this project from the beginning.”
Published in Equipment
June 27, 2017 – Why do the best fruits seem to have the shortest shelf life? It’s a challenge that plagues fresh fruit markets around the world, and has real implications for consumers and fruit growers.

Now, new research from University of Guelph has led to the development of a product that extends the shelf life of fresh fruits by days and even weeks, and it is showing promise in food insecure regions around the world.

“In people and in fruit, skin shrinks with age — it’s part of the life cycle, as the membranes start losing their tightness,” said Jay Subramanian, Professor of Tree Fruit Breeding and Biotechnology at the University of Guelph, who works from the Vineland research station. “Now we know the enzymes responsible for that process can be slowed.”

The secret, according to Subramanian, is in hexanal, a compound that is naturally produced by every plant in the world. His lab has developed a formulation that includes a higher concentration of hexanal to keep fruit fresh for longer.

Subramanian’s research team began experimenting with applying their formula to sweet cherry and peaches in the Niagara region. They found they were able to extend the shelf life of both fruits and spraying the formula directly on the plant prior to harvest worked as well as using it as a dip for newly harvested fruit.

“Even one day makes a huge difference for some crops,” Subramanian said. “In other fruits like mango or banana you can extend it much longer.”Once the formula is available on the market, Subramanian sees applications on fruit farms across Ontario, including U-pick operations, where an extended season would be beneficial. But the opportunities could also make a significant impact on fruit markets around the world.

Subramanian’s research team was one of only 19 projects worldwide awarded an exclusive research grant from the Canadian International Food Security Research Fund, a program governed by the International Development Research Centre and funded through Global Affairs Canada.

The team used the funding to collaborate with colleagues in India and Sri Lanka on mango and banana production. Mangos are one of the top five most-produced fruits in the world, with 80 per cent of the production coming from South Asia. After more than three years, researchers learned that by spraying the formula on mangos before harvest, they were able to delay ripening by up to three weeks.

“A farmer can spray half of his farm with this formulation and harvest it two or three weeks after the first part of the crop has gone to market,” Subramanian said. “It stretches out the season, the farmer doesn’t need to panic and sell all of his fruit at once and a glut is avoided. It has a beautiful trickle-down effect because the farmer has more leverage, and the consumer gets good, fresh fruit for a longer period.”

The team is at work in the second phase of the project applying similar principles to banana crops in African and Caribbean countries, and hopes to also tackle papaya, citrus and other fruits.

The formula has been licensed to a company that is completing regulatory applications and is expected to reach the commercial market within three years.
Published in Research
June 19 2017, Guelph, Ont – The diverse range of projects the Agricultural Adaptation Council (AAC) funds was the focus of the organization’s summer reception and dinner held June 14 in Mississauga.

To date, Ontario organizations and collaborations have completed 195 projects through Growing Forward 2 (GF2), and funding for 385 projects totaling $33.3 million has been approved by the AAC board over the past four years.

The program was launched in 2013 and demand remained strong until the final application deadline this past April. GF2 officially ends March 31, 2018.

“The AAC is a strategic enabler. Projects funded have played a significant role in raising the standard and profile of Ontario's agriculture, agri-food and agri-based products sector,” said Kelly Duffy, AAC chair, in her remarks to the audience. “I know that if we continue to invest in the sector, we will produce long-lasting benefits that will impact future generations.”

Ontario Agri-Food Technologies is currently leading a project on open agri-food data collaboration, Ontario Precision Agri-Food (OPAF).

It’s assessing where Ontario and Canada are with precision agriculture and what needs to be done to manage and enable data for future global market access and sustainability. OPAF is collaborating with an initiative called FIWare Mundus that is creating a global Future Internet (FI) ecosystem to enable easy, fast data sharing.

“We’re on the cusp of an evolution; data is at its centre and it’s the new commodity in agriculture,” said OAFT president Tyler Whale. “OPAF is a facilitator that creates trusted relationships amongst value chain partners to integrate new and existing data resources.”

The Ontario Produce Marketing Association is tackling the issue of food waste through a GF2 funded project, and according to lead researcher Martin Gooch of Value Chain Management International, there is a compelling business case for addressing the problem.

“People outside of the industry are often staggered by the amount of waste in food. This is the first project of its kind in North America,” said Gooch.

The OPMA program includes a series of workshops and a handbook with 10 easy to follow steps for identifying where waste happens in farm, processing or retail processes. According to Gooch, a soon-to-be-released case study clearly shows the opportunity of addressing food waste: a 29 per cent increase in grade-out of potatoes resulted in a 74 per cent increase in producer margin.

“A big thank you to AAC for providing the funding; it’s great working with an organization that encompasses the entire chain,” Gooch added.

Harry Pelissero of Egg Farmers of Ontario spoke briefly about one of EFO’s latest projects involving gender detection in unhatched eggs.

The non-invasive scanning technology developed at McGill University can identify the gender of day-old eggs before they are incubated. This means female eggs can be incubated for hatching and infertile or male eggs can enter the table or processing egg streams, eliminating the need to hatch male eggs.

AAC gave us the support to take this from the lab to pre-prototype and then prototype stage,” explained Pelissero. “The investment that AAC has put into this provides an economical solution to a challenge in the industry; this is an outcome that will literally go around the world.”

Duffy also used the opportunity to highlight overall GF2 program successes. Funding through this federal-provincial-territorial initiative has resulted in innovative research results, increased knowledge and awareness, access to new markets, and supported the overall competitiveness of the sector.
Published in Associations
June 19, 2017, Agassiz, BC – Dr. Rishi Burlakoti has joined the Agassiz Research and Development Centre (ARDC), bringing with him more than 10 years of experience in plant pathology. His research will address the new and existing diseases of high value horticultural crops, focusing mainly on small fruits and vegetable crops.

Prior to joining the ARDC team, Dr. Burlakoti led the mycology and bacteriology units at the World Vegetable Centre in Taiwan. He focused on global fungal and bacterial diseases of solanaceous vegetables (e.g. tomato, pepper, eggplant). From 2010 to 2016, he worked as a plant pathologist and research lead at Weather Innovations Consulting LP, an agricultural consulting company based in Ontario, where he led several applied research projects and provided consulting services to sector organizations and agri-food businesses in Canada, the United States, and Europe. Dr. Burlakoti also worked as a Postdoctoral scientist in the Wild Blueberry Research Program at Dalhousie University in 2009, and in the Barley Pathology Program at North Dakota State University in 2008.

Dr. Burlakoti is serving as an editor for two international journals: Plants and Archives of Phytopathology and Plant Protection. He is also a member of the Canadian Phytopathological Society, the American Phytopathological Society, and the Canadian Society for Horticultural Science. He is an adjunct faculty at Plant Agriculture, University of Guelph.

Dr. Burlakoti will be at the ARDC’s open house on July 22. Drop by to meet him and the rest of the centre’s staff as we celebrate Canada’s 150th birthday. Alternatively, you can reach him at This e-mail address is being protected from spambots. You need JavaScript enabled to view it or 604-796-6011.
Published in Research
June 16, 2017, Boise, ID - In Idaho, potatoes are both a humble stereotype and a half-billion dollar crop.

According to the Idaho Farm Bureau Federation, every spring farmers plant more than 320,000 acres of potatoes valued at between $550-$700 million. Yet unbeknownst to most consumers, roughly 30 percent of the potatoes harvested spoil before they reach a grocery store shelf.

Boise State University researchers Harish Subbaraman, David Estrada and Yantian Hou hope to change that.

In a recently awarded one-year $413,681 Idaho Global Entrepreneurial Mission (IGEM) grant, Boise State is collaborating with Idaho State University and industry partners Isaacs Hydropermutation Technologies, Inc (IHT) and Emerson to develop a wireless sensor network that would be able to detect temperature, humidity levels, and carbon dioxide and ammonia levels in real time, to help with early detection of rot.

The cloud-enabled sensor system will feature three-dimensional hot spot visualization and help predict on-coming rot or deteriorating quality of stored potatoes. This will allow owners to use the real-time sensor data, along with a miniature air scrubber system IHT is developing, to respond to potential problems quickly, as they develop.

“The current problem is, there are no sensors that can do early detection of rot,” said Subbaraman, an assistant professor of electrical engineering. “But if you can identify rot at an early stage, you can prevent crop loss on a large scale.”

“Rot spreads on contact. The way the system works now is, a farmer walks into their facility, smells rotten potatoes and that’s it,” added Estrada, an assistant professor of materials science. “But our sensors can detect parts per million, or even parts per billion, and can tell us in exactly which bin the sensor is detecting rot. That way, farmers can go out, pull out a few rotten potatoes and save the rest of the batch.”

Estrada explained that the cost of printing sensors could be as low as a few dollars apiece. Not only would the monitoring system hopefully prevent waste, it could help preserve the quality of potatoes in the facility.

Subbaraman and Estrada plan to have their sensors tested in a facility by the end of their year-long grant cycle by working with industry partner Emerson PakSense. But Estrada points out that this project has been three years in the making and will continue long past the IGEM grant.

“The College of Business and Economics and the College of Engineering have been invested in building a printed electronics community in Idaho for several years,” Estrada said. “Most recently, our Advanced Nanomaterials and Manufacturing Laboratory has partnered with the NASA Ames Research Center, Air Force Research Labs, and American Semiconductor to develop flexible electronics technologies.”

Subbaraman noted, “We’re also very interested in partnering with others interested in this technology. It’s a great economic impact for the state and we see that growing in the future.”

Not only would the cloud-enabled wireless sensory system save Idaho farmers millions in revenue, it could have a billion-dollar impact on the national potato industry and help address larger socio-economic issues such as food scarcity in parts of the world.

“The benefit of this system is it’s extremely low cost,” Subbaraman added. “This dual detection and air scrubbing system could later be extended to other stored crops as well.”
Published in Research
June 9, 2017, Winnipeg, Man. - Researchers with Agriculture and Agri-Food Canada are setting the stage for what may be a new entry into the Canadian-grown "super" food market.

Lingonberries are already popular in Scandinavian cuisine where they are used in sauces for chicken and pork, as well as in muffins and breads.

Small, tart and slightly sweet, they are native to British Columbia, Manitoba, and Atlantic Canada and have the potential to become a valuable crop for Canadian growers.

The lingonberry is closely related to the blueberry and cranberry, which are also high in anti-oxidants. The benefits of lingonberries and their juice may go even further: preliminary studies in Sweden suggest there is potential to help prevent weight gain, and to help prevent high sugar and cholesterol levels.

But there’s more! New research from Dr. Chris Siow, Research Scientist with Agriculture and Agri-Food Canada and principal investigator with the Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), located at St. Boniface Hospital, is showing that lingonberries may also contribute to healthy kidneys.

Here’s how: during kidney surgery, including transplants, kidneys experience low oxygen, and when oxygen is returned to the organ there can be inflammation and damage. In tests using lab rats Dr. Siow’s research team fed one millilitre (the human-equivalent of one cup) of Manitoba lingonberry juice daily for three weeks to one group and none to another prior to kidney surgery.

The rats that had consumed lingonberry juice had improved kidney function, reduced kidney stress and reduced inflammation following the operation in comparison to those that had none. These results also showed that as the concentration of lingonberry increased, the protective effect also increased.

“Overall, the research data obtained from these studies is very promising and we are encouraged that we may have a commodity that has positive impacts on human health,” said Dr. Siow. “We plan to continue with our studies to validate the early results and look for additional benefits the berry may provide.”

Meanwhile across the country, research on the lingonberry plant itself is taking place. Work with lingonberry production and germplasm enhancement is being done at AAFC’s St. John’s Research and Development Centre (NL) under the leadership of Dr. Samir Debnath. He has been working in collaboration with Dr. Siow.

“Lingonberry will be a potential health-promoting berry crop for Canada” said Dr. Debnath who developed a number of promising hybrids between European and Canadian lingonberries.

Dr. Debnath is also working in collaboration with the Newfoundland and Labrador provincial government and with Newfoundland and Labrador (NL) growers for growing lingonberry hybrids under field conditions.

Drs. Debnath and Siow not only believe that this berry will be beneficial to consumers – especially when studies like his continue to produce positive results – but that lingonberries will also be of interest to growers as they may provide new business opportunities.

Key discoveries:
  • Lingonberries contain more anthocyanins, the pigments that give them their red colour, per gram than most commonly consumed berries (i.e., blueberries, cranberries). It is these compounds that may provide health benefits.
  • Lingonberries are rich in vitamins and minerals.
  • Lingonberries can be found growing wild in the northern regions of Canada. Research shows that the lingonberries grown in Northern Manitoba contain the highest levels of antioxidants.
Published in Research
May 31, 2017, Toronto, Ont. - Food matters. Canadians make choices every day about food that directly impacts their health, environment, and communities. The Government of Canada is committed to helping put more affordable, safe, healthy, food on tables across the country, while protecting the environment.

Agriculture and Agri-Food Minister, Lawrence MacAulay, announced today that the Government of Canada is launching consultations to support the development of A Food Policy for Canada. An online survey is now open at www.canada.ca/food-policy and Canadians are encouraged to share their input to help shape a food policy that will cover the entire food system, from farm to fork. Canadians can share their views on four major themes
  • Increasing access to affordable food;
  • Improving health and food safety;
  • Conserving our soil, water, and air; and
  • Growing more high-quality food.
A Food Policy for Canada will be the first-of-its-kind for the Government of Canada, and is a new step in the government’s mandate to taking a collaborative and broad-based approach to addressing food-related issues in Canada.

The online consultation is the first of a number of engagement activities planned with a wide range of participants to inform the development of a food policy.

Feedback from the consultations will provide the federal government with a better understanding of Canadians’ priorities when it comes to food-related issues. The results will help inform key elements of a food policy, including a long-term vision and identifying actions to take in the near term.
Published in Federal
Page 1 of 19

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Potato Variety Demonstration
Thu Aug 24, 2017 @ 1:00PM - 03:00PM
International Strawberry Congress 2017
Wed Sep 06, 2017 @ 8:00AM - 05:00PM
Agri-Tourism & Farm Direct Marketing Bus Tour
Mon Sep 11, 2017 @ 8:00AM - 05:00PM