Plant Genetics
October 12, 2017, Madison, WI – The colour red is splashed across gardens, forests and farms, attracting pollinators with bright hues, signaling ripe fruit and delighting vegetable and flower gardeners alike.

But if you put a ruby raspberry up against a crimson beet and look closely, you might just notice: they are different reds.

Millions of years ago, one family of plants – the beets and their near and distant cousins – hit upon a brand new red pigment and discarded the red used by the rest of the plant world. How this new red evolved, and why a plant that makes both kinds of red pigment has never been found, are questions that have long attracted researchers puzzling over plant evolution.

Writing recently in the journal New Phytologist, University of Wisconsin-Madison Professor of Botany Hiroshi Maeda and his colleagues describe an ancient loosening up of a key biochemical pathway that set the stage for the ancestors of beets to develop their characteristic red pigment. By evolving an efficient way to make the amino acid tyrosine, the raw material for the new red, this plant family freed up extra tyrosine for more uses. Later innovations turned the newly abundant tyrosine scarlet.

The new findings can aid beet breeding programs and provide tools and information for scientists studying how to turn tyrosine into its many useful derivatives, which include morphine and vitamin E.

“The core question we have been interested in is how metabolic pathways have evolved in different plants, and why plants can make so many different compounds,” says Maeda. “Beets were the perfect start for addressing the question.”

The vast majority of plants rely on a class of pigments called anthocyanins to turn their leaves and fruits purple and red. But the ancestors of beets developed the red and yellow betalains, and then turned off the redundant anthocyanins. Besides beets, the colour is found in Swiss chard, rhubarb, quinoa and cactuses, among thousands of species. Betalains are common food dyes and are bred for by beet breeders.

When Maeda lab graduate student and lead author of the new paper Samuel Lopez-Nieves isolated the enzymes in beets that produce tyrosine, he found two versions. One was inhibited by tyrosine – a natural way to regulate the amount of the amino acid, by shutting off production when there is a lot of it. But the second enzyme was much less sensitive to regulation by tyrosine, meaning it could keep making the amino acid without being slowed down. The upshot was that beets produced much more tyrosine than other plants, enough to play around with and turn into betalains.

Figuring that humans had bred this highly active tyrosine pathway while selecting for bright-red beets, Lopez-Nieves isolated the enzymes from wild beets.

“Even the wild ancestor of beets, sea beet, had this deregulated enzyme already. That was unexpected. So, our initial hypothesis was wrong,” says Lopez-Nieves.

So he turned to spinach, a more distant cousin that diverged from beets longer ago. Spinach also had two copies, one that was not inhibited by tyrosine, meaning the new tyrosine pathway must be older than the spinach-beet ancestor. The researchers needed to go back much further in evolutionary time to find when the ancestor of beets evolved a second, less inhibited enzyme.

Working with collaborators at the University of Michigan and the University of Cambridge, Maeda’s team analyzed the genomes of dozens of plant families, some that made betalains and others that diverged before the new pigments had evolved. They discovered that the tyrosine pathway innovation – with one enzyme free to make more of the amino acid – evolved long before betalains. Only later did other enzymes evolve that could turn the abundant tyrosine into the red betalains.

“Our initial hypothesis was the betalain pigment pathway evolved and then, during the breeding process, people tweaked the tyrosine pathway in order to further increase the pigment. But that was not the case,” says Maeda. “It actually happened way back before. And it provided an evolutionary stepping stone toward the evolution of this novel pigment pathway.”

The takeaway of this study, says Maeda, is that altering the production of raw materials like tyrosine opens up new avenues for producing the varied and useful compounds that make plants nature’s premier chemists.

For some unknown ancestor of beets and cactuses, this flexibility in raw materials allowed it to discover a new kind of red that the world had not seen before, one that is still splashed across the plant world today.
Published in Research
September 11, 2017, Geneva, NY – Breeding the next great grape is getting a boost thanks to new funding for a Cornell University-led project that uses genomic technology to create varieties that are more flavourful and sustainable.

The project – VitisGen2 – is a collaboration of 25 scientists from 11 institutions who are working in multidisciplinary teams to accelerate development of the next generation of grapes. Launched in 2011, the project was recently renewed with a $6.5 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture, Specialty Crop Research Initiative.

The work has the potential to save millions of dollars annually for the U.S. grape industry – in excess of $100 million in California alone, according to Bruce Reisch, professor of grapevine breeding and genetics in the College of Agriculture and Life Sciences (CALS), who co-leads the project with Lance Cadle-Davidson, plant pathologist with the USDA-ARS Grape Genetics Research Unit, both located at Cornell’s New York State Agricultural Experiment Station in Geneva, New York.

VitisGen2’s multipronged model addresses the grape production continuum. An economics team examines the benefits of improving grape varieties. Geneticists identify molecular markers for important traits in grapes, from resistance to diseases like powdery mildew to boosting low-temperature tolerance and fruit quality. Grape-breeding scientists develop new grape varieties that incorporate these traits, and teams of outreach specialists help growers and consumers understand the advantages of newly introduced grape varieties.

The result is a new generation of high-quality grapes that can be grown at lower cost and adapt easily to a range of geographic regions and climates, all with less environmental impact.

“We all stand to benefit in areas ranging from the environment to economic sustainability to improving the profit and quality possibilities for the industry,” Reisch said.

Among the achievements in the project’s first five-year phase:
  • Deploying DNA sequencing technology to map the grape genome, a project led by Cadle-Davidson and Qi Sun of the Cornell Bioinformatics Facility.
  • Identifying 75 genetic markers associated with a range of important traits.
  • Pinpointing a gene that controls acidity in grapes. The discovery by the winemaking fruit quality team, led by Gavin Sacks, associate professor of food science in CALS, will help winemakers moderate excessive acid levels typically found in wild grape species, which are often used in crossbreeding for their resistance to disease.
  • Developing a process called Amplicon Sequencing, or AmpSeq, that allows researchers to rapidly analyze genetic variation in multiple genomic regions – anywhere from 2 to 500 DNA sequence markers – simultaneously.
The project has already shared its disease-resistant germplasm with breeding programs throughout the U.S., speeding the development of grape varieties with more flavour and that are more environmentally sustainable.

Looking to the future, Reisch and the VitisGen2 teams are aiming to expand the use of high-throughput DNA and plant evaluation technology to improve the quality of wine, raisin and table grapes, as well as rootstocks. VitisGen2 is using genome sequencing to identify markers within numerous genes of interest to better understand which genes are controlling priority traits.

The team is also looking at ways to use its collective knowledge of genetics to help growers manage vineyards. For example, AmpSeq technology can track the powdery mildew pathogen population, allowing researchers to determine which pesticides are most effective at specific times of the season, thereby reducing pesticide spraying and increasing its efficacy.

Ultimately, VitisGen2 will bring greater efficiency to grape growing, which is an intensive, comprehensive and costly process, said Reisch.

“It takes 15-plus years to get a new variety to the market,” Reisch said. “We’re probably shrinking the timeline down by two or three years.”
Published in Research
September 5, 2017, Netherlands - In a hidden experimental field in Wageningen, the Netherlands, surrounded by tall maize plants, there are several smaller plots with potato plants.

In some of these plots there are only dead plants, in others the plants have been affected by late blight (Phytophthora infestans) to a greater or lesser extent, but there are also fields with only perfectly healthy potatoes.

The latter are the result of the latest crosses by the Wageningen company, Solynta. The breeders have succeeded, thanks to their revolutionary hybrid breeding technique, in making potato plants insusceptible to the dreaded potato disease.

A new way of potato breeding

Potatoes are generally clone-bred and grown vegetatively. A seed-potato is put in the ground, which produces some ten new potatoes. One of the disadvantages of this system is that the parent plant transmits diseases to the offspring. Also, making the crop resistant is a long process.

Solynta has therefore selected a whole new approach: the company developed hybrid breeding with elite parent-lines, which allow propagation with true seeds. READ MORE
Published in Research
August 30, 2017, California - The Public Strawberry Breeding Program at the University of California, Davis, and colleagues in California and Florida have received a $4.5 million grant from the National Institute of Food and Agriculture of the U.S. Department of Agriculture to improve the disease resistance and sustainable production of strawberries throughout the nation.

The collaborative grant is good news for strawberry farmers and consumers everywhere, according to Rick Tomlinson, president of the California Strawberry Commission. To signal its own support, the strawberry commission pledged an additional $1.8 million to the UC Davis program.

“An investment in the UC Davis strawberry breeding program is an investment in the future of strawberries,” Tomlinson said. “Thanks to their groundbreaking research and strong partnerships, Director Steve Knapp and his colleagues are developing improved strawberry varieties publicly available to farmers.”

Improving genetic resistance to disease

Strawberries constitute a $4.4 billion-dollar industry in the United States, and 94 percent of the nation’s strawberry fruit and nursery plants are grown in California and Florida.

Strawberries are especially vulnerable to soil-borne pathogens, which destroy plants and greatly reduce yield. Since the 1960s, strawberry growers have depended on fumigants like methyl bromide to treat soils before planting berries in an effort to control disease. But methyl bromide has been phased out by the Environmental Protection Agency and will no longer be available after 2017.

“Following the elimination of methyl bromide fumigation, strawberry growers are under greater economic pressures, and there is an urgent need for improved, disease-resistant strawberry varieties that will thrive without fumigation,” Knapp said.

Knapp will head a team of scientists from UC Davis, UC Santa Cruz, UC Riverside, the UC Division of Agriculture and Natural Resources, Cal Poly San Luis Obispo, and the University of Florida.

Together, researchers will identify and manage pathogen threats, mine elite and wild genetic resources to find natural sources of resistance to pathogens, and accelerate the development of public varieties resistant to a broad spectrum of disease and other pests.

“Strawberry growers are faced with the need to deliver high-quality fruit to consumers year-round, while protecting the environment, fostering economic growth in their communities and coping with profound changes in production practices,” Knapp said. “We look forward to collaborating with our industry partners through research, agricultural extension and education to help them reach those goals.”

UC Davis Public Strawberry Breeding Program

During six decades, the UC Davis Public Strawberry Breeding Program has developed more than 30 patented varieties, made strawberries a year-round crop in California and boosted strawberry yield from just 6 tons per acre in the 1950s to 30 tons per acre today.

Knapp took over directorship of the program in 2015. He and his team are working to develop short-day and day-neutral strawberry varieties; studying the genetics of disease-resistance, fruit quality and photoperiod response; and applying genomic techniques to make traditional strawberry breeding more efficient. They have 10 public varieties in the pipeline and plan to release one or two new strawberry varieties later this year.

Initiative collaborators

The grant is funded by USDA’s Specialty Crop Research Initiative. Collaborators from UC Davis include agricultural economist Rachael Goodhue, plant pathologist Thomas Gordon, and plant scientists Julia Harshman and Thomas Poorten.

Other key collaborators are Oleg Daugovish with UC Agricultural and Natural Resources; Alexander Putman at UC Riverside; Julie Guthman at UC Santa Cruz; Gerald Holmes and Kelly Ivors, both at Cal Poly; and Seonghee Lee, Natália Peres and Vance Whitaker, all of the University of Florida.
Published in Research
August 25, 2017, Fredericton, N.B. - Benoit Bizimungu spends about 12 years working on a single type of potato, trying to develop a more resilient crop that requires less fertilizer or chemical.

The research scientist had a chance to share his work with the public last week when his workplace, the Fredericton Research and Development Centre, opened its laboratory doors to the public on Saturday, Aug. 19th.

More than 300 people stopped by the open house to get a peek into the federal facility, which primarily focuses on researching potatoes. READ MORE 
Published in Profiles
August 16, 2017, Ottawa, Ont. - Canadian fruit growers need the best varieties of plants to be successful. In the case of Canadian strawberry growers, they grow the best varieties of plants, which foreign buyers demand. The import and export of fruit plants, however, must go through the Canadian Food Inspection Agency (CFIA) to test for potentially devastating plant viruses. Currently, this testing and quarantine process takes an average of three years to complete, significantly hampering the speed of trade.

Today, the Honourable Lawrence MacAulay, Minister of Agriculture and Agri-Food, announced that the CFIA will lead two projects worth $500,000 that use new DNA-based technologies to reduce the quarantine testing time, helping to boost trade and economic competitiveness in the $240 million Canadian fruit tree industry.

"Together with provincial partners and industry, our government is making the investments in innovative science that enables agriculture to be a leading growth sector of Canada's economy. Together we can help meet the world's growing demand for high-quality, sustainable food and help grow our middle class," Minister MacAulay, said. 

The first project will dramatically shorten the testing period of seeds, cuttings and bulbs imported into Canada to grow new varieties of plants. With this funding, scientists will use DNA technology to test for all viruses associated with imported plants to get an early indication of any plant diseases present. This approach could reduce the quarantine testing time by up to two and a half years.

The second project streamlines the testing of strawberry plants. Traditionally, multiple tests for viruses are required before exporting strawberry plants to foreign markets. This project will test for multiple viruses in one single test, dramatically reducing the time and cost to get plants to market.

Funding for these projects is provided through a partnership between the CFIA, Genome British Columbia, Summerland Varieties Corporation, Phyto Diagnostics, the British Columbia Cherry Association, and Vineland Research and Innovations Centre.

"Canadian import/export markets will be stronger and more competitive because of these genomics-based tools. Early detection of pathogens and viruses is a vital outcome of genomics and it is being applied across many key economic sectors." Dr. Catalina Lopez-Correa, Chief Scientific Officer and Vice President, Genome British Columbia said. 
Published in Fruit
August 15, 2017 - The Council of Canadians is pressing the provincial government to keep genetically modified potatoes out of P.E.I. soil.

Council chair Leo Broderick questions the science behind Innate generation 2 potatoes, and added P.E.I. would be better off staying away from the controversy surrounding genetically modified food. He noted P.E.I. is already attracting attention as a producer of genetically modified salmon. READ MORE
Published in Food Safety
August 10, 2017, Morgan Hill, CA – Next week, Sakata Seed America will host its annual California Field Days in Salinas [August 14-16] and Woodland [August 16-18], Calif.

This will be the 31st year Sakata has hosted the event, which continues to grow every year.

“We began hosting these trials in the small field in Salinas back in 1986,” said John Nelson, sales and marketing director with the company. “Since, it’s continues to expand with our growing infrastructure and has become our largest vegetable event of the year, showcasing the best of Sakata’s genetics and serving host to our customers, media, retail and more. We look forward to celebrating 40 years of business in NAFTA at this year’s trials.”

Those attending Sakata’s field days this year will see a few new modifications. Most notably, it will be the inaugural year Sakata will host its Woodland (warm-season crops – melon, onion, pepper, tomato, pumpkin, squash, watermelon) trials at the new Woodland Research Station; an investment in land, greenhouses, offices and other facilities slated for completion of the first phases in 2018. To learn more about Sakata’s Woodland development, check out the 40th Anniversary video.

In Salinas (cool-season crops – broccoli, beet, spinach, etc.) trials, customers will be greeted with an updated Broccoli Master. This information-rich piece of literature serves as the ultimate reference guide for all things Sakata broccoli, including ideal varieties for every growing region and other important information for successful broccoli cultivation.

“This will be the third generation of our Broccoli Master, and it has always been well-used by our dealers and growers alike,” said Matt Linder, senior broccoli product manager and Salinas Valley area sales manager. “It contains all the great information you need on our varieties right at your fingertips, and is heavy-duty enough to be kept in your truck or pocket when in the field. It’s been a few years since we’ve had an updated version, so we’re excited to include some great new additions we’ve recently added to our broccoli line, such as Millennium, Diamante, Eastern Magic, Eastern Crown and Emerald Star.”

For a digital copy, visit Sakata’s website; physical copies will be debuted at next week’s trials, and available for direct mail thereafter.
Published in Research
July 27, 2017, Vineland, Ont – It’s been 10 years since a new horticultural research facility in Niagara Region was launched as the Vineland Research and Innovation Centre (Vineland).

Since then, Vineland has been turning heads across Canada and internationally with its needs-based innovations. The organization reflects the entire horticulture value chain from farmers to consumers, and they’re not afraid to take big steps to help the industry solve problems.

“We started by understanding what needed to be done and how we needed to work to make a difference, which is real results with real impact from acres in the field to shelf space in the store,” says Vineland’s CEO, Dr. Jim Brandle.

Addressing the labour intensive nature of horticultural production was a need identified early on. Today, machines designed in Vineland’s robotics program and built in Ontario are coming into use in fruit and vegetable greenhouses, which Brandle says will go a long way in helping to keep growers competitive, as well as boost the local manufacturing and automation sector.
Sweet potatoes, okra and Asian eggplant are offering new market opportunities for growers and consumers eager to eat more locally produced food.

And Vineland’s rose breeding program made a big splash earlier this year when its Canadian Shield rose – a trademarked low-maintenance and winter hardy variety bred in Canada – was named Flower of the Year at Canada Blooms.

Another significant milestone was the construction of the largest, most modern horticultural research greenhouse in North America with commercial-scale height and growing rooms dedicated to horticulture, which opened in 2016 and was built around the needs of Canada’s greenhouse vegetable and flower growers.“Today, we’re commercializing innovations, from the Canadian Shield rose to new apple and pear varieties,” Brandle says. “We are having the kind of impact that we sought in those early days.”

Natural ways to control greenhouse pests – called biocontrols – are making a real difference to flower growers and a new technology that can identify genetic variants for traits in all plants has just been spun-off into a for-profit company.

“We’re creating a reputation and that alone is an achievement because we’re the new kid on the block,” he says. “We have a ton of good people with and around the organization and on our board who are making this happen.”Vineland is an important partner to the horticulture industry, according to Jan VanderHout, a greenhouse vegetable grower and Chair of the Ontario Fruit and Vegetable Growers’ Association.

“They are very good at asking us what we want and taking a whole value chain approach to research and innovation,” VanderHout says. “You need the right facilities and expertise and Vineland fills that need to the benefit of the industry as a whole.”

Looking to the future, both Brandle and VanderHout predict that cap and trade pressure and high energy costs will result in more work around energy use and carbon footprint reduction.And Vineland’s consumer-focused approaches will continue to drive new innovation, from high flavour greenhouse tomatoes to Ontario-grown apple varieties.

“We will further lever consumer-driven plant breeding and work with the intent around pleasing consumers and trying to understand what they want so we can build that into our selection criteria,” Brandle says.
Published in Profiles
July 14, 2017, Gainesville, FL – Some people love to eat a juicy, seedless watermelon for a tasty, refreshing snack during a hot summer day. University of Florida scientists have found a way to stave off potential diseases while retaining that flavour.

Consumers increasingly savour the convenience and taste of seedless watermelons, said Xin Zhao, a UF Institute of Food and Agricultural Sciences associate professor of horticultural sciences and lead author of a new study examining rootstocks, flavour and texture of watermelons.

Many growers produce seedless cultivars because that’s what consumers want, and it’s important to maintain the fruit’s yield and taste, as seedless cultivars might be more susceptible to fusarium wilt, a major soil-borne disease issue in watermelon production, Zhao said.

For the study, UF/IFAS researchers grafted seedless watermelon onto squash rootstocks to ward off soil-borne diseases, such as fusarium wilt. In plant grafting, scientists call the upper part of the plant the scion, while the lower part is the rootstock. In the case of vegetable grafting, a grafted plant comes from joining a vigorous rootstock plant – often with resistance or tolerance to certain soil-borne pathogens – with a scion plant with desirable aboveground traits.

Grafting is a useful tool to manage soil-borne diseases, but in this study, researchers were concerned that if they grafted watermelon onto squash rootstocks, they might reduce its fruit quality and taste. Overall, study results showed no loss in taste and major fruit quality attributes, like total soluble solids and lycopene content, Zhao said. Consumers in UF taste panels confirmed the flavour remained largely consistent between grafted and non-grafted plant treatments under different production conditions.

Furthermore, said Zhao, compared with the non-grafted seedless watermelons, plants grafted onto the squash rootstocks exhibited a consistently higher level of flesh firmness.

“We are continuing our grafted watermelon research to optimize management of grafted watermelon production, maximize its full potential and seek answers to economic feasibility,” she said.

Still to come is a paper that specifically tells researchers whether they warded off fusarium wilt under high disease pressure, Zhao said. Grafting with selected rootstocks as a cultural practice is viewed as an integrated disease management tool in the toolbox for watermelon growers to consider when dealing with fusarium wilt “hot spots” in the field, she said. However, most squash rootstocks are generally more susceptible to root-knot nematodes, a potential challenge with using grafted plants. Other UF/IFAS researchers are tackling that issue.

The new UF/IFAS study is published in the Journal of the Science of Food and Agriculture.
Published in Research
July 13, 2017, P.E.I. - This year’s Canadian acreage of J.R. Simplot’s genetically engineered Innate potato will be “very small” to non-existent, according to a company spokesperson.

Kerwin Bradley, director of commercial innovation for Simplot, says the company’s marketing strategy for new varieties is based on customer polls and identification of marketing channels. “We don’t plant potatoes, or give seed to growers, until we know that there is a place for them to sell them, so how quickly that develops depends on how quickly we develop routes to market for those potatoes,” he says.

“That way we ensure we keep the risk really low for everybody, especially the growers.”

The company has been talking to major Canadian retailers to “check the pulse” of their interest in the new potato, says Doug Cole, Simpot’s director of marketing and communications.

First generation lines of the Innate potato, which boast lower bruising and acrylamide, were approved by Health Canada and the Canadian Food Inspection Agency last spring. Second generation lines, which have late blight resistance and lower sugar levels for improved processing, have already been approved in the U.S., and Canadian approvals are expected later this year. READ MORE
Published in Vegetables
June 15, 2017, New Zealand - Potatoes are an integral part of a Kiwi diet, whether mashed up or sliced into chips, but there's always been a very distinct issue with them: they're not particularly healthy.

But now some New Zealand farmers have invented a new kind of potato they claim has 40 percent less carbs.

Farmer Andrew Keeney told Three's The Project that the Lotato, as it's been called, is grown in Pukekohe and Ohakune, and created by cross-breeding other varieties. READ MORE
Published in Vegetables
June 9, 2017, Fredericton, N.B. - Housed in Canada’s centre of excellence for potato research along the Saint John River Valley in Fredericton, New Brunswick, Agriculture and Agri-Food Canada’s scientists maintain a living library of nearly 180 potentially high-value potato gene resources.

Canada’s potato gene bank, or Canadian Potato Genetic Resources, is part of an international commitment to global food security.

If disease or a natural disaster strikes and potato crops are devastated, researchers from anywhere in the world can turn to the gene bank to rebuild the stock.

Researchers can also call on the gene bank for resources to help them develop stronger, more disease-resistant and environmentally-resilient varieties.

"We preserve some potato varieties that are of unique value to northern latitude climates, varieties that are adapted to shorter seasons with longer daylight hours. Only certain star varieties are grown by the potato industry so in the interest of preserving genetic diversity, an important part of our role as gene bank curators is to back up our genetic resources," said Dr. Benoit Bizimungu, Gene Resources Curator, Agriculture and Agri-Food Canada

Unlike other gene banks that preserve seed-propagated crops like grains, the potato gene bank is made up of live tissue cultures or tubers which are perishable and require- constant maintenance.

Plantlets are grown in aseptic conditions in test tubes that are stored in temperature-controlled growth chambers for six to eight weeks at a time. The collection is then refreshed,continuously monitored and periodically tested for contaminations.

Microtubers, or tiny potatoes about the size of a raisin, are also produced in test-tubes and preserved for up to a year as a backup. A duplicate collection of microtubers is kept at AAFC's Saskatoon Research and Development Centre.

"It's well worth it," says Dr. Bizimungu of the work involved in conserving high-value potato genetic diversity. "There are many potato varieties that aren't grown today that have traits that are of current or future interest to researchers and educators. Preserving these varieties ensures valuable attributes, and even those with known susceptibility to certain diseases, are kept for the development of future, better varieties."

The collection is comprised of heritage varieties, modern Canadian-bred varieties, as well as strains known to show differential reactions to certain diseases and breeding lines with specific traits scientists are interested in studying.

In addition to Canadian varieties, the collection also includes varieties from the U.S., Peru and many European countries including Ireland, the Netherlands and Estonia.

Canadian Potato Genetic Resource is part of Plant Gene Resources Canada (PRGC). The mandate of PGRC is to acquire, preserve and evaluate the genetic diversity of crops and their wild relatives with focus on germplasm of economic importance or potential for Canada.
Published in Vegetables
May 25, 2017, P.E.I. - There will be no commercially grown GMO potatoes on Prince Edward Island this year, according to Simplot Plant Sciences, the company that developed the Innate potato.

Innate potatoes bruise less and have less black spots than conventional potatoes.

Doug Cole, director of marketing and communications, said the company is holding off allowing commercial growth of Innate potatoes in Canada until there's a proven market for them. READ MORE
Published in Vegetables
May 15, 2017, Augusta, ME – With little fanfare, the Maine Board of Pesticides Control recently approved the registration of three new types of genetically engineered potatoes that have been developed by a major Idaho agribusiness company.

The move means that the J.R. Simplot Co.’s Russet Burbank, Ranger Russet and Atlantic potatoes could be planted in Maine fields at any time. These potatoes were created by adding genes from a wild potato plant and are designed to be resistant to late blight. READ MORE
Published in Vegetables
April 21, 2017, Morgantown, WV - Gallegly, West Virginia University professor emeritus of plant pathology, has made it his mission to develop a disease-free tomato.

Gallegly and his research partner, Mahfuz Rahman, released two new varieties of tomato.

The tomatoes, identified as West Virginia ’17A and West Virginia ’17B, were obtained by breeding the tomatoes known as the West Virginia ’63 and the Iron Lady.

Gallegly developed the W.Va. ’63 tomato in the 1960s as a tomato resistant to late blight, a plant disease usually caused by fungi. The Iron Lady tomato, developed by Martha Mutschler-Chu of Cornell University, also resists late blight but also Septoria lycopersici, a fungus that causes spotting on leaves.

Gallegly said the stink bug, specifically the marmorated stink bug, is the likely cause of Septoria increasing on tomatoes.

“We just crossed the two tomatoes and in the second generation in the field, we made selections for fruit type, yield, taste and so on,” Gallegly said. “So we came up with two new varieties.”

Through their evaluation, the two tomatoes should have a higher tolerance to Septoria leaf spot and better fruit quality.Tomatoes are a specialty of Gallegly, who turns 94 this month.

He came to the University in 1949 as an assistant professor and was hired to become the vegetable plant pathologist for the state.

He spent his first fall and winter at the university collecting varieties of tomatoes and potatoes. The next year, he planted varieties of the two vegetables and discovered late blight was severe that year. So much so that he had zero tomato yield.

“That told me I had to go to work on trying to control this disease,” he said.

After 13 years of screening the vegetables and research, he came up a new tomato in 1963 — the West Virginia ’63.

Gallegly officially retired from the University in 1986 but earned emeritus status and kept a presence at the college to continue research and teaching.

On March 24, the two new tomatoes were unveiled during the annual Potomac Division of the American Phytopathological Society meeting in Morgantown. READ MORE
Published in Research
April 10, 2017, Scottsdale, AZ – Okanagan Specialty Fruits Inc. (OSF) was honoured with a Fruits & Veggies – More Matters Industry Role Model award at the Produce for Better Health’s annual conference, held last week. This represents the third consecutive year of Fruits & Veggies – More Matters recognition, with OSF’s designation as an industry champion in each of the previous two years. 

Jessica Brady of OSF accepted the award on behalf of the company.

Okanagan Specialty Fruits is proud to be a long-time supporter of Fruits and Veggies – More Matters, and we look forward to continuing this support in years to come,” she said. “OSF has always been committed to promoting produce consumption for all ages, and we look forward to our flagship products, nonbrowning Arctic apples, helping support healthy lifestyles.”

Recipients of the Fruits & Veggies – More Matters Industry Role Model awards are recognized for the ongoing support and promotion of the health based mission and messaging efforts associated with the program.
Published in Companies
Sweet potato consumption is on the rise across the nation and Canadian horticultural growers will soon have the chance to get more of the action.
Published in Research
February 22, 2017 – Agriculture and Agri-Food Canada’s potato breeders saw remarkable results with their 2016 red-skinned selections. In fact, red-skinned varieties made up half of the total selections AAFC breeders released to industry during the annual Potato Selection Release Open House.

From adaptability to the processing market and high yields to disease resistance, these potential new varieties have it all. For the first time, the breeding program unveiled a multi-purpose red-skinned selection showing promise for processing as wedges, and as a traditional table potato. Breeders have also developed Russet selections that have a longer shelf life in cold storage while maintaining stable sugars, making them attractive new selections to French fry processors. These were among 15 new potato selections that AAFC’s breeding team unveiled this year.

The selections were narrowed down from more than 100,000 hybrid seedlings grown and tested and measured over six years in AAFC greenhouses, laboratories and fields across the country. The selections are the result of continuing technological advances that are allowing AAFC researchers to probe the complicated DNA of potatoes to identify genes and strands of DNA linked to favourable traits. This will lead to the development of germplasm with the potential for better yields, nutritional value and cooking and processing qualities.

The selections also featured disease and pest resistance that make them less demanding on the environment and offer alternative choices for organic growers. With each genetic marker that is identified, researchers are able to more quickly and accurately search through hundreds of different kinds of potatoes, including centuries-old heritage varieties and wild species, for potential breeding lines that will produce new hybrids with the desired traits.
Published in Research
Over the past few decades and, more specifically, the past five years, there has been a resurgence of interest in hard cider in North America. Many Canadian cider makers have distinguished themselves among top producers and, because of increasing consumer demand for cider products, there are growing market opportunities both nationally and overseas.
Published in Research
Page 1 of 7

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Understanding the CanadaGAP Program
Mon Oct 30, 2017 @ 8:30AM - 05:00PM
Understanding the CanadaGAP Program
Thu Nov 02, 2017 @ 8:30AM - 05:00PM
2017 Irrigation Show
Mon Nov 06, 2017 @ 8:00AM - 05:00PM
2017 Dickeya & Pectobacterium Summit
Thu Nov 09, 2017 @ 8:30AM - 05:00PM