Equipment

Manfredi Cold Storage recently expanded the facility by 70,000 sq. ft., for 400,000 total sq. ft. of cold storage space, and already plans are in the works for future expansion. The distributor handles fruit, vegetables and foodstuffs from 22 countries, at zero to 55 Fahrenheit temperatures, in its facility that provides retailers with wireless, real-time inventory and access.In order to keep such continued growth on track, effective operation has required the use of rugged drive-in rack, designed to the application, according to Rob Wharry, the facility’s director of operations.“About 150 to 200 truckloads of product move in and out of our storage everyday – about 25,000 pallets – so the drive-in rack needs to be very durable and accessible,” says Wharry. “The product has to go out quickly and efficiently to grocery stores, club stores, distribution centers, and the food service industry.”Drive-in racks enable storing of up to 75 per cent more pallets than selective rack and are ideal for high-traffic and cooler/freezer installations. With drive-in rack, forklifts drive directly into the rack to allow storage of two or more pallets deep.But because forklifts drive directly into the rack, they tend to take more abuse than other rack structures. In cooler and freezer applications, the rack must withstand forklift abuse due to the confined space, slick surfaces, and cold temperatures that slow driver reflexes and make impact more frequent.“We’re in and out of rack with heavy pallets and equipment so many times a day,” says Wharry. “It’s a fact of life that sometimes forklifts will run into the rack, so it just needs to be able to stand up to the daily use.”Looking to optimize the rack’s durability and operation, the cold chain distributor turned to Steel King Industries, a storage system and pallet rack manufacturer. In the most recent expansion, about 4,000 pallets of refrigerated storage capacity were added. For this, Manfredi Cold Storage chose SK3000 pallet rack, a bolted rack with structural channel columns.A number of rack features are helping the distributor to meet its strength, durability, and maintenance goals.Compared to typical racking, the pallet rack constructed of hot-rolled structural channel column with full horizontal and diagonal bracing offers greater frame strength, durability and cross-sectional area. All Grade-5 hardware provides greater shear strength, and a heavy seven-gauge wrap-around connector plate ensures a square and plumb installation with a tighter connection and greater moment resistance.The drive-in rack also includes a number of features that enhance ease-of-use and safety.The drive-in load rail construction includes: structural angle rails that “guide” pallets for ease of use; flared rail entry ends to allow easy bay access; space-saver low profile arms that increase clearance and decrease possible product damage; welded aisle-side load arms that eliminate hazardous load projections into aisles; welded rail stops that prevent loads from being pushed off and increase safety; and two-inch vertical adjustability of the bolted rack, which allows for a variety of configurations for current or future products.“The heavy rub rail inside the rack helps to guide the pallets in,” says Wharry. “The flared rail entry makes it easier to put pallets in and to take them out of the upper positions.”For extra protection and reinforcement against forklift impact, a guard on the front of the rack’s first upright was added. The double column, welded angle column protector is designed for heavy pallets and provides additional strength.According to Wharry, the vendor was also willing to accommodate their needs in other ways as well.“Our operation is a little different than a typical storage customer because we’re dealing with lots of different sized products, so we had a very specific design in mind,” says Wharry. “Everything is specific to our application – rack height, width, pallet loads, and how we utilize it.”The rack openings are about 12- to 16-inches taller than a standard rack opening to allow the use of very tall pallets, he says. Additional adjustments to the rack include the specific implementation of guards, heavy rail, and how it is anchored to the floor.With continuing growth expected, Manfredi Cold Storage is already planning to start the construction of a new facility in southern New Jersey.“When the new facility is constructed, the racking set up will be just like what we have here,” concludes Wharry. “We’ve determined what works for us and our customers, and
July 18, 2017, Ontario - New storage bins are currently being tested that could extend the shelf life of fresh Ontario produce.Dr. Jennifer DeEll, frest market quality program lead with Ontario Ministry of Agriculture, Food and Rural Affairs, is currently leading a two-year project to test the effectiveness of the Janny MT modified atmosphere storage bins on Ontario fruits and vegetable crops.Check out the video for more!
July 17, 2017, Niagara on the Lake, Ont. - The Penn Refrigeration forced air system dramatically reduces the time peaches need to reach the optimal temperature. Take a look at how the equipment is being used at the Niagara on the Lake, P.G. Enns & Sons' facility.
June 24, 2016, Guelph, Ont – An all-natural spray, developed by University of Guelph researcher Jay Subramanian and his team of scientists, could do wonders to reduce food waste and enhance food security by extending the shelf life of fruit by up to 50 per cent. The spray uses a nanotechnology-based application of hexanal, a natural plant extract that prevents fruit spoilage. READ MORE
January 7, 2016, Orange, CA – New research reveals that irradiation can also be effective for treating blueberries and grapes for export without compromising fruit quality. It is often necessary to treat produce for insects in order to transport crops out of quarantine areas. Fumigation with methyl bromide, one of the most common treatments, is in the process of being phased out because of its depleting effect on the ozone layer. Alternately, ionizing irradiation at low doses is being used worldwide as a promising phytosanitary treatment for fruit such as guava, rambutan, and mango. Star, Jewel, and Snowchaser blueberries and Sugraone and Crimson Seedless grapes were irradiated at a target dose of 400 Gy (range of 400-590 Gy for blueberries and 400-500 Gy for grapes) and stored for three and 18 days under refrigeration, plus three days at ambient temperatures. "This experiment was designed to simulate the time of ground transport (from California) to Mexico and sea transport from California to Asia," the scientists explained. The fruit was then evaluated for soluble solids concentration, titratable acidity, and weight loss. With respect to these quality attributes, the results showed differences among fruit varieties, but the researchers found treatment effects to be "not significant." The study also involved sensory tests in which consumers evaluated the fruit on appearance, flavour, texture, and overall "liking." "Firmness was the primary attribute affected by irradiation for both varieties of grapes, but sensory testing showed that consumers did not have a preference for control or irradiated fruit," the authors said. "However, sensory scores for flavour were higher for the irradiated berries than the control berries after storage, suggesting a decline in quality of the control blueberries with time." The authors said the research showed that (in terms of quality) irradiation at 400 Gy can maintain blueberry and table grape quality sufficiently to meet transportation, distribution, and storage needs for overseas markets. "Our results show that both blueberries and grapes have a high tolerance for phytosanitary irradiation and that storage affects their quality more than irradiation treatment," they concluded. The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/50/11/1666.abstract.  
October 7, 2015, Guelph, Ont – It can be a real challenge for farmers to match their supply of fresh fruits and vegetables with consumer demand – especially at the height of the harvest when there is often an excess of fresh produce on the market, which can lower prices to growers. The new bins, designed for use in cold storage facilities, may help solve that problem by extending the shelf life of perishable crops to give farmers more flexibility with their marketing decisions. “Reducing oxygen levels slows down the ripening process of fruits and vegetables, and our module is an air-tight container that can store fresh produce in a low oxygen environment,” explains Vincent Nicoletis, general manager of Janny MTCA, the Canadian subsidiary of the product’s French manufacturer, Janny MT. The storage bin lids contain semi-permeable membranes that release carbon dioxide from the bin while maintaining a small concentration of oxygen inside, and can achieve concentration levels of three per cent for both oxygen and carbon dioxide. The normal concentration in the atmosphere or in a cold storage room is approximately 20.9 per cent for oxygen and 0.1 per cent for carbon dioxide. Dr. Jennifer DeEll, fresh market quality program lead with the Ontario Ministry of Agriculture, Food and Rural Affairs, is leading a two-year project to test the effectiveness of the modified atmosphere storage bin on Ontario crops. In 2014, her team worked with asparagus, cherries, plums, apples, and pears, and this year trials are being conducted on blueberries at Blueberry Hill Estates near St. Williams, Ont. “Overall, we’re finding that the bins do extend the storage life. Blueberries also generally respond well to modified atmosphere storage, so we’re hoping to find the same thing this year with the blueberries as well,” she explains. For this year’s trial, four of the new bins were filled with blueberries and placed into cold storage. Each week for four weeks, a gas sample is taken from one of the bins to make sure it is providing the expected environment. This bin is then opened and the fruit is removed and weighed before it is taken to a lab to be analyzed for acidity, colour, sugar, juice, firmness and overall quality. The technology lends itself particularly well to smaller operations with on-farm markets or who sell to farmers’ markets. For example, Nicoletis says the storage bin will give apple and pear growers more time to sell their crops on the higher value fresh market instead of having to look for wholesale or processing markets. Growers of crops with a short shelf life, like asparagus, blueberries and cherries, can hold back part of their production to sell at a later date when the price might be higher, but without affecting product quality. “The main benefit for consumers is fresh, local produce available for longer,” he adds. The Janny MT module evaluation project has received funding from Ontario Agri-Food Technologies’ (OAFT) Rapid Response to Research Needs program. OAFT is supported by Growing Forward 2, a federal-provincial-territorial initiative. More information about the modified atmosphere storage modules can be found at www.jannymtca.com.
According to my children – and myself at times – I’m ancient. I grew up in those heady days before TV remotes and hand-held video games, back when where you stood in a room played a role in whether the TV station would come in clear. I remember when personal computers became mainstream. My first PC was gigantic, composed of three heavy, bulky components that could each serve as a boat anchor. The PC was going to revolutionize work. Hello three-day workweek.
June 13, 2017, Tampa, FL – Harvest CROO Robotics announced the introduction of their autonomous vehicle. This is a major step towards the completion of the Alpha Unit, which is expected to be picking strawberries in Florida next winter.As part of Phase I of the National Science Foundation Grant, Harvest CROO Robotics is developing software and hardware tools. They include the vehicle’s GPS navigation system, LIDAR technology, and other camera and sensor features.The mobile platform is a modified version of a Colby Harvest Pro Machine. With four-wheel steering, turning movement will be smooth and precise, providing a zero turning radius for greater maneuverability than a standard tractor. Special levelling hardware and software has been developed and added to allow the vehicle to compensate for varying bed heights.The vehicle will carry 16 picking robots through the field and span 6 beds of plants, picking the four middle beds. The Harvest CROO machine is equipped with a dual GPS system. The Harvester uses both GPS systems to interpolate the position of the platform to be able to position the robots precisely over the plants.“Having the machine navigate the fields autonomously is the culmination of years of work and prototyping,” said Bob Pitzer, Co-Founder and CTO of Harvest CROO. “It is very gratifying to see our team effort come to fruition.”Harvest CROO Robotics continues to develop and test the latest technology for agricultural robotics. Using the proprietary vision system, all ripe berries will be harvested from the plants. The fruit will then be transferred up to the platform level of the machine using a series of conveyers. There, the packing module of the machine will perform a secondary inspection and grade the fruit. Depending on quality, it will either be packed into consumer units, diverted to process trays, or discarded. The use of this technology will improve the quality of the berries picked, reduce energy usage, and increase strawberry yields.In December, the National Science Foundation awarded a grant worth up to $1 million. Harvest CROO Robotics used part of these funds to bring several highly qualified and experienced individuals on board the project. Scott Jantz, Electrical Engineering Manager, said, “We all feel like we are part of something special.”While fundraising for the project has been ongoing, the current investment round will likely be closed at the end of July, when field testing of the vehicle is completed. “We will possibly open a new investment round early next year, at a higher valuation.”, stated Gary Wishnatzki, Co-Founder. “The new unit price will reflect the successful deployment of the Alpha Unit, a key milestone.”
June 6, 2017, Kingston Ont – Farming is a complex business, and keeping track of everything can sometimes be troublesome, if not a bit overwhelming. With this in mind, Kingston-based software company Dragonfly IT developed Croptracker – a multi-faceted, cloud-based monitoring system designed to give fruit and vegetable growers real-time updates on their businesses. “Croptracker offers an easy-to-use software package that monitors growing practices throughout the season,” said Matthew Deir, company founder. “Growers sign up for our system and can access all of their daily inputs from one central hub. It helps both traceability and cost saving.” Croptracker highlights three key areas relevant to growers’ economic, environmental, and social sustainability, with food traceability taking the top spot, followed by operational costs and yield analysis. The software itself is a consolidation of similar systems previously developed by Deir’s company, including Fruit Tracker, Apple Tracker, and Nursery Tracker. By combining these and several other systems, he says, Dragonfly IT has tried to make the software useful for all growers of all kinds. He also emphasized that Croptracker is “literally grower-built,” being the result of “thousands of hours meeting with growers and learning what their needs were.” The Croptracker cloud system allows growers to map how their crop is produced – what time it was planted, what inputs went into it, and so on – as well as where it came from. According to Deir, the software can literally trace each basket of product back to the field from which it was harvested, and potentially, even the person who harvested it. Croptracker can also be used as a human resources interface, helping keep track of employee time and activity. There’s even a “punch clock” feature that can show growers who is doing what, for how long, and when. By being able to see how long it takes to perform different tasks, Deir said farmers can pinpoint where their costs are coming from, and if necessary, investigate why. At the end of the growing season, the Croptracker system can also help monitor how good – or bad – the harvest was at different times and from different parts of the farm. Giving an opportunity for contrast and comparison, Deir said, means growers can further distil the potential sources of any yield discrepancy they might encounter. Approximately 1,000 farmers currently have access to the software for free (their producer associations buy the rights on their behalf), but individual growers can still access Croptracker on a pay-per-package basis. And it’s not just Ontario farmers who can use the service either; growers producing more exotic fruits in places far afield have also shown interest – most recently, for example, a New Zealand avocado grower. “I never thought about [the software] working for that kind of crop, but the farmer definitely thought otherwise,” Deir said.
For fruit growers across the globe, birds are a common bane, particularly for those seeking a quiet, humane and cost-effective mitigation strategy. Starlings are especially unsavory interlopers as they not only spread disease but often destroy an entire crop, forcing growers to walk away and leave everything on the tree.
After fruit and vegetable producers put so much careful attention and effort into planting and tending their crops and orchards, they naturally want to minimize losses due to bruising, nicks and scrapes, temperature issues and so on.
There is nothing like a just picked, tree-ripened apple. At a BC Tree Fruits (BCTF) field day last fall, I was offered a Honeycrisp the size of a grapefruit. It was the first one I had tried and it lived up to its reputation.
Fresno, CA – Jain Irrigation, Inc. recently announced it is acquiring ETwater, a supplier of intelligent irrigation technology and smart irrigation controllers. ETwater’s patented technology integrates data science, machine learning and predictive analytics about weather forecast and environmental variables to automatically, optimally adjust site-specific irrigation schedules. Connecting over the Internet, ETwater smart controllers get their schedules through secure, cellular data networks, and users are able to remotely monitor and manage controllers from any mobile or smart device. “We’re very proud of the positive impact on outdoor water conservation we’ve had in the U.S. market and raising awareness to the necessity of irrigating in harmony with nature,” said Pat McIntyre, CEO of ETwater. “The Jain acquisition will expand ETwater efficiencies throughout the U.S. and now worldwide to become a gold standard in sustainable water management globally.” “Jain is an early leader in the IoT for agriculture,” said Aric Olson, president of Jain Irrigation, Inc. “ETwater will improve our position in agriculture and helps us make a bigger impact in reducing water waste in landscape irrigation." “We are thrilled to have ETwater join our family. After several successful irrigation technology acquisitions, the addition of ETwater … adds key technologies that can be deployed globally to our growing technology customer base.”
Drip irrigation is no longer the ‘new kid on the block,’ and nearly 10 per cent of U.S. farms rely on it to grow their crops. Each year, new growers dabble with drip and many learn by trial and error. Reaching out with some helpful tips to those growers is Inge Bisconer, technical marketing and sales manager for Toro Micro-Irrigation.
Hydro One and Niagara Peninsula Energy Inc. recently announced the AgriPump Rebate Program, the first program of its kind in Ontario to offer instant rebates to customers who purchase a high-efficiency pump kit. The program is ideal for all farming applications, including livestock, greenhouse and vineyards. Upgrading to a high-efficiency pump will improve performance and could save customers up to 40 per cent of their system's energy costs."This energy conservation program is focused on helping our agricultural customers manage their electricity and water usage all while saving money," said Cindy-Lynn Steele, vice president, Market Solutions, Hydro One. "As Ontario's largest electricity provider to farming customers, we are committed to offering a variety of energy solutions to help them save on electricity and invest in programs that will meet their important needs while delivering a positive return to their bottom line.""This collaborative approach with IESO and Hydro One allowed us to be very innovative with this new program," says Niagara Peninsula Energy Inc. CEO and president Brian Wilkie. "We're happy to be able to cater to the agricultural sector and provide this instant rebate program on high efficiency pump sets with advanced control technology.""Water conservation and high energy costs are a big concern for farmers in the Niagara region and across the province," said Drew Spoelstra, director for Halton, Hamilton-Wentworth, Niagara North and Niagara South, Ontario Federation of Agriculture. "The Save on Energy Conservation Program and this type of cross-utility initiative to launch the AgriPump Rebate Program is great for agriculture."To be eligible for a rebate under the program, each kit must be between 0.5 hp and 10 hp and must comprise of a pump, motor, variable frequency drive and accessories. Customers can receive up to $610 per constant pressure pump kit. The pumps are quick and easy to install and guard against wear and tear.The AgriPump Rebate Program is only available to agriculture customers in Hydro One and Niagara Peninsula Energy Inc. (NPEI) service territories. The instant rebate is fulfilled at the point of purchase.To learn more and participate in the AgriPump Rebate program, visit: www.agripump.caContact: 1-844-403-3937 or
July 20, 2017, Ontario - Grapes and apples are high-value crops that require adequate water to grow properly. low water conditions such as drought stress have a negative impact on grapes and apples, lowering yields and reducing fruit quality.The Water Adaption Management and Quality Initiative project is using a suite of technology to determine soil moisture for grapes, apple and tender fruit and improve recording and monitoring of natural and artificial irrigation events to create best management practices and improve water conservation and efficiency while increasing yields. For more, check out the video above!
Drip irrigation systems have seen a lot of improvements since their invention in the mid 1960s. They are worth considering as a watering system, says Bruce Naka, an independent irrigation consultant who spoke to growers at the Pacific Agriculture Show in Abbotsford, B.C.
January 17, 2017, Edmonton, Alta – The HortSnacks-to-Go 2016-2017 Webinar Series continues on January 30, 2017, at 3 p.m. MT (5 p.m. ET). “The webinar will feature Rebecca Shortt from the Ontario Ministry of Agriculture, Food, and Rural Affairs,” says Dustin Morton, commercial horticulture specialist, Alberta Agriculture and Forestry (AF). “An expert in irrigation management, Rebecca will discuss scheduling with drip irrigation and how to get the most bang for your buck from your irrigation system.”There is no charge to attend the webinar. To register, call Dustin Morton at 780-679-1314 or via e-mail at This e-mail address is being protected from spambots. You need JavaScript enabled to view it . For more information on the HortSnacks-to-Go Webinar Series, go to AF's horticulture homepage.
Champaign, Ill. — A new lightweight, low-cost agricultural robot could transform data collection and field scouting for agronomists, seed companies and farmers.The TerraSentia crop phenotyping robot, developed by a team of scientists at the University of Illinois, was featured at the 2018 Energy Innovation Summit Technology Showcase in National Harbor, Maryland, on March 14.Traveling autonomously between crop rows, the robot measures the traits of individual plants using a variety of sensors, including cameras, transmitting the data in real time to the operator’s phone or laptop computer. A custom app and tablet computer that come with the robot enable the operator to steer the robot using virtual reality and GPS. For the full story, CLICK HERE. 
January 11, 2018 - The growing popularity of robotic weeders for vegetable crops has grown partly out of necessity, says Steven Fennimore, an extension specialist at the University of California, Davis. The need for robotic weeders stems from two issues: a lack of herbicides available for use in specialty crops, and the fact that hand-weeding has become more and more expensive. Without pesticides, growers have had to hire people to hand-weed vast fields. Hand-weeding is slow and increasingly expensive: it can cost between $150 and $300 per acre. That motivates some growers to look to robotic weeders. “I’ve been working with robotic weeders for about 10 years now, and the technology is really just starting to come into commercial use,” Fennimore says. “It’s really an economic incentive to consider them.” Fennimore works with university scientists and companies to engineer and test the weeders. The weeders utilize tiny blades that pop in and out to uproot weeds without damaging crops. He says that although the technology isn’t perfect, it’s getting better and better. The weeders are programmed to recognize a pattern and can tell the difference between a plant and the soil. However, they currently have trouble telling the difference between a weed and a crop. That said, Fennimore explains how some companies are training the machines to tell a lettuce plant from a weed. He’s also working with university engineers on a system to tag the crop plant so the weeders will avoid it. “The problem with the machines right now is that they are version 1.0, and there’s tremendous room for improvement,” he says. “The inability to be able to tell the difference between a weed and a crop requires the grower to be very exact when using them. The rows have to be a little straighter, cleaner, and more consistent because the machines aren’t that sophisticated yet. The robots don’t like surprises.” The robotic weeders currently on the market cost anywhere between $120,000 and $175,000. For some growers, it is a better long-term option than expensive hand-weeding. Others think it’s a lot of money for a new technology, and are waiting for it to get better and cheaper. Fennimore believes robotic weeders are the future of weeding in specialty crops. Because of higher labour costs and more incentives to grow organically with fewer pesticides, European growers have been using robotic weeders for some time. Fennimore is focusing his work on physical control of weeds because it offers the best option. He’s also started working in crops besides lettuce, such as tomatoes and onions. He adds that each crop will require a different system. “I believe what makes the robotic weeders better than herbicides is that this electronic-based technology is very flexible and can be updated easily,” he says. “We all update our phones and computers constantly, which is a sign of a robust and flexible technology.” Fennimore recently presented his research at the annual meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America in Tampa, FL.  
July 27, 2017, Waterloo, Ont. - A biotechnology company that created a spray that helps farmers and growers protect crops from frost damage was among the big winners at the Velocity Fund Finals held recently at the University of Waterloo. Velocity is a comprehensive entrepreneurship program at Waterloo.Innovative Protein Technologies created Frost Armour, a spray-on-foam, after witnessing the effects of a devastating spring frost in 2012 that knocked out about 80 per cent of Ontario’s apple crop. Farmers would remove it after several days with another solution that converts it into a fertilizer."Frost damage not only affects farmers’ livelihoods, but also our food supply," said Erin Laidley, a Waterloo alumnus, who co-founded the company with Tom Keeling and Dan Krska, two alumni from the University of Guelph. "There are other spray-on solutions, but ours is non-toxic and has no negative environmental impact.”During the competition, 10 companies pitched their businesses to a panel of judges representing the investment, startup and business communities. Judges considered innovation, market potential, market viability and overall pitch.The following three companies were also grand-prize winners of $25,000 and space at Velocity. Three of the five top-prize-winning companies are based at Velocity Science. Altius Analytics Labs is a health-tech startup that helps occupational groups better manage musculoskeletal injuries. EPOCH is a skills and services marketplace that connects refugees and community members, using time as a means of exchange. VivaSpire is making lightweight wearable machines that purify oxygen from the air without the need for high pressure. For the first time, the prize of $10,000 for best hardware or science company went to a team that was not among the grand-prize winners. Vena Medical is making navigating through arteries faster, easier and safer by providing physicians with a camera that sees through blood.During the VFF event, an additional 10 teams of University of Waterloo students competed for three prizes of $5,000 and access to Velocity workspaces.The winners of the Velocity $5K are: HALo works to provide manual wheelchair users with accessible solutions to motorize their wheelchairs. QuantWave provides faster, cheaper and simpler pathogen detection for drinking water and food suppliers. SheLeads is a story-based game that helps girls realize their unlimited leadership potential. “Building a business is one of the boldest risks you can take, and yet our companies continue to demonstrate the vision, talent, and drive to think big and tackle challenging problems,” said Jay Shah, director of Velocity. “Today we are fortunate to benefit from an enormous wealth of experience from our judges who are leaders from the global investment, health and artificial-intelligence communities and entrepreneurs at heart. In helping Velocity award $125,000 in funding to these companies, we have taken a bet of our own in these founders, and said be bold, think big, and go out and change the world.”The judges for the Velocity Fund $25K competition travelled from Palo Alto, San Francisco and Toronto. They were Seth Bannon, founding partner, Fifty Years; Dianne Carmichael, chief advisor of health tech, Council of Canadian Innovators; Eric Migicovsky, visiting partner, Y Combinator; Tomi Poutanen, co-CEO, Layer 6 AI.The judges for the Velocity Fund $5K competition were Kane Hsieh, investor, Root Ventures; Tobiasz Dankiewicz, co-founder, Reebee; Karen Webb, principal, KWebb Solutions Inc.For more information on the Velocity Fund Finals, please visit www.velocityfundfinals.com
November 8, 2016, Pocatello, ID – An invention called a “humigator” is helping potato growers across the U.S. have yearlong control over their potatoes. Garry Isaacs, the creator of the humigator, developed the first prototype in 1985. He said the name is a combination of the words humid and fumigator. Its primary function is to clean the air of potato storage sites, by doing so the pathogens known for inflicting diseases like silver scurf and black dot disease are taken out. READ MORE
  When applying chemicals to crops, where the chemical is delivered is sometimes more important than how much is delivered. A team of U.S. Department of Agriculture Agricultural Research Service (ARS) scientists has developed a new laser-guided spraying system that controls spray outputs to match targeted tree structures. “Conventional spray application technology requires excessive amounts of pesticide to achieve effective pest control,” says ARS agricultural engineer Heping Zhu. “This challenge is now overcome by our automated, variable-rate, air-assisted, precision sprayer. The new system is able to characterize the presence, size, shape, and foliage density of target trees and apply the optimum amount of pesticide in real time.” The system has many parts that have to work together with precision, including a high-speed laser-scanning sensor working in conjunction with a Doppler radar travel-speed sensor. “Our field experiments showed that the precision sprayer, when compared to conventional sprayers with best pest management practices, consistently sprayed the correct amount of chemicals, despite changes in tree structure and species,” Zhu says. “Pest control with the new sprayer was comparable to that of conventional sprayers, but the new sprayer reduced average pesticide use between 46 and 68 per cent, with an average pesticide cost savings of $230 per acre for ornamental nurseries. The cost savings can be much higher for orchards and other fruit crop productions.” Additional tests in an apple orchard demonstrated that the new sprayer reduced spray loss beyond tree canopies between 40 and 87 per cent, airborne spray drift by up to 87 per cent, and spray loss on the ground between 68 and 93 per cent. Sharon Durham is with Agricultural Research Service’s information staff.        
  The old axiom of “thinking outside the box” applies well to fruit and vegetable producers looking for ways to reduce costs in their cooling-packing facility, says Hugh Fraser, a consultant with OTB Farm Solutions and retired extension agricultural engineer with the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA). “The first thing I am going to say is to stop coaching and sit in the stands for a while,” he says. Take note of where your produce is not flowing in a straight line and where travel distances could be a lot shorter. “Look at things from a different perspective and ask key workers for their good ideas on efficiency and reward them,” Fraser says. “With a forklift, you can assume that it costs about $20 per hour to own, fuel and operate, and that’s on the conservative side. “Let us assume you are picking seven hours per day and that you have 50 picking days per season, and that you pick 60 bins per day. Let us also assume that each bin is touched about 12 times per cycle.” Fraser says the cycle starts with an empty bin that goes to the orchard to be filled, then comes back, goes into cooler storage, then the pack line to be emptied before the process repeats. He estimates the bin is touched one to three times at each location. “Over the course of the season, this adds up to about 36,000 touches,” he says. “This is costing you about 20 cents every time you touch that bin. I know that doesn’t sound like a lot of money, but after you touch all those bins 36,000 times in the season, there is a lot of money to be saved.” Fraser says to also think about forklift trips and how time gets added. “Slowing around corners can waste a lot of time, or blind spots where you can’t see what’s coming, or busy areas where you may have to slow down because it’s a bottleneck,” he says. “Every time you travel an extra metre, you add one second to your trip.” Moving bins to get at bins and then moving them back is a big time waster so think about ways to reduce the number of moves for the forklift, he says. Be careful around obstructions and in poorly lit areas, and try to handle the optimal combination of bins that will safely save you time. “Try to stop the re-warming of produce out of storage. You spend a lot of time and money to make the produce cold and then we bring it out to pack it and it gets re-warmed. It has to spend as little time out of cold storage as possible.” He remembers being in California where they had bins of produce passed on a conveyor through a hole in the cold storage wall right onto the packing line, which reduced the time the produce was out of storage. Fraser says all produce cools quickly at first, then slowly over time, regardless of the produce type or the style of cooler. In a typical forced-air cooler, produce will cool about 3 C in about 12 minutes, by 6 C in 24 minutes and by 9 C in 36 minutes. “We can’t stop re-warming but there are some things we can do to slow it down,” he says. Produce actually re-warms just like it cools, so it warms quickly at first then slowly over time. Fraser uses peaches as an example. “Assume that produce coming out of cold storage and onto the packing line is at one degree C and that it rewarms at only half the rate of forced-air cooling, which is very possible. So, in 12 minutes the temperature would rise by 1.5 degrees to 2.5 degrees, in 24 minutes by three degrees to four degrees, and in 36 minutes by 4.5 degrees to 5.5 degrees. “At 5.5 C, we are getting into the danger zone for potential mealiness with peaches,” he says. “Trying to re-cool peaches after you’ve got them in baskets and into the shipping container [is] very, very difficult.” Ideally, you want the shortest possible time out of storage to keep that coolness. “Do a simple test on your time out of storage. Let’s assume you dump your first bin at 8 a.m., and your last (60th bin), is packed out by 6 p.m., so it took 10 hours to pack 60 bins. That’s about 10 minutes on average per bin. It’s worth doing a little test to convince yourself that stuff is not out of storage very long.” Another way to reduce costs is to improve labour efficiency on the pack line, he says. Researchers at the University of California talk about having an adjustable, soft floor with a foot rail so that people can change their positions throughout the day. For shorter workers, the floor can be raised to allow their forearms to be nearly horizontal. “It’s a simple thing but it can be a big thing,” he says. Another idea to consider is having an adjustable shelf that sets the packing boxes at an optimum 12 to 15 degree incline from the horizontal so they tip in toward the worker. This position allows the worker to keep their upper arms more comfortably at near vertical. Fluorescent lighting should ideally be in the range of 500 to 1,000 lux – a unit of illumination. “Many packers are older and they need better lighting. Workers should also be rotated to reduce fatigue and monotony.” Fraser suggests not implementing these changes across the board, but to start with only a few workers to see how they respond to the changes. “Your workers will tell you very quickly if they like what you did or not,” he says. In some peach packing facilities, it can take 10 minutes of down time to switch containers on the line and it can easily happen twice a day. “If you have 20 packers, then they are idle 333 hours over 50 days, which is about $4,000 in lost time.” Evaporator coils must also earn their keep. “To get the most efficiency out of your coils, ensure they are drawing cold air through and around the produce so it’s cooling it. Air always takes the path of least resistance and it will not flow through bins or pallets unless it is forced to do so. Also, if you restrict airflow, or have short-circuiting of cold air back to the coils, you’re going to have faster frost buildup and more frequent defrosts required, which means higher electricity costs and slower pull down times. “You have to make the cold air in your storage do a better job for you,” he says. To do this, ensure there are four to six inches between bin or pallet rows that are parallel to the airflow in the room, and six to eight inches at the sidewall that are parallel to the airflow. “You should have at least 12 inches of space under the coils so the air has room to get back to the cooling coils and get re-cooled,” Fraser says.  “It’s easier to cool fruit in a bulk bin than after it is packed in a basket and placed in a corrugated container. Fruit not cold when packed is more susceptible to bruising and a shorter shelf life.” Over his 35-year career, Fraser has found the need for more cross-pollination among farms. “Tender fruit producers often don’t know what vegetable growers are doing and greenhouse growers don’t know what grape growers do,” he says. “We’ve lost some of that cross-pollination of good ideas.” Greenhouse vegetable and flower operations are highly mechanized and have pack lines, forklifts, automation and all can learn from everyone else. They also pack in containers and some use forced-air coolers. “Your non-competitors are going to share good ideas with you more than your competitors will,” he says. Having a long-term plan is another area that needs work. “Most farms expand production 100 per cent over one generation but nobody has a plan ready in their back pocket. And disaster can strike with a 100 per cent loss and again nobody has a plan to draw from,” he says. By thinking outside the box, producers can reduce costs and streamline operations. By having an expansion plan in place, they can be ready for whatever life brings their way.      
June 6, 2017, Charlottetown, PEI – As potato growers across P.E.I. plant this year's crop, many are using the latest GPS technology to guide them. "I'd say probably 80 per cent of growers out there would have something like this," said Will MacNeill, owner of Atlantic Precision Agri-Services, in West Devon, P.E.I. READ MORE
February 8, 2017 – Walki, a producer of technical laminates and protective packaging materials, has developed an organic mulching solution based on natural biodegradable fibres instead of plastic. Walki Agripap is made from kraft paper that is coated with a biodegradable coating layer, which slows down the degradation of the paper. Without the coating, the paper would degrade in the soil within a few weeks. Walki’s new organic mulching solution has been the subject of extensive field-testing in Finland. The tests, which were carried out in 2016 by independent research institute Luke Piikkiö, compared the performance of different biodegradable mulches for growing iceberg lettuce and seedling onions. The tests demonstrated that Agripap was easy to lay on the fields and delivered excellent weed control. The results in terms of yield and durability were also good. Following the successful testing and approval of Agripap in Finland and Sweden, the next step will be to complete testing in Europe’s main mulching markets: Spain, France and Italy.
June 8, 2016, South Rustico, PEI – A P.E.I. potato farmer has taken to social media to show people what exactly he does for a living. "I have a bunch of friends that, you know, they just don't know what I do for a living," said Marten Nieuwhof. READ MORE
Jul. 18, 2013, Vancouver, BC - Vancouver has created the country’s first urban orchard and it is being touted as the largest of its kind on the continent. While innovative to Canada, growing fruit in city spaces is not a new concept in North America nor the rest of the world. Close to 500 trees stand ready to produce fruit in a vacant lot bordering Vancouver’s Downtown Eastside neighbourhood, which will including Meyer lemons, Santa Rosa plums, French butter pears, persimmons, figs, and quince. As well, around 50 to 60 types of culinary herbs that will be ready for harvest this fall. READ MORE
June 7, 2013, Kunkletown, PA – Vineyard posts are essential to proper trellising, but they come at a cost, both ethically and fiscally. The wood in the post doesn’t come from anywhere but trees, and there are social concerns about to deforestation and overuse of natural resources. Enter the recycled plastic vineyard post. Not only do they provide an ethical benefit in regards to deforestation issues, but they also stand the test of time better than any wood could. “Vineyard poles are highly durable,” said inventor and manufacturer Patric Kelley. “They’re not susceptible to rot, termites, carpenter bees or other wood boring insects. They look good and function well for many, many years. Compare it to wood yourself. We think you will be pleasantly surprised.” Where wood continues to rot and requires constant upkeep (and money), plastic requires very little, if any follow-up maintenance over the same lifespan. One might express a concern about the plastic itself, and whether or not there are any chemicals that might be leached into the earth, especially when dealing with something as delicate as soil used for growing grapes. According to Kelley, unlike pressure treated wood, there are zero hazardous chemicals that could be leached from it. With a dedication to helping preserve the environment and a desire to help others who are also committed to this goal, Close the Loop was established in October 2000 after much research. Products are made in the U.S. from recycled plastic scrap and waste wood fibre. For more information, click here or check out Close the Loop on Facebook.
April 11, 2013 – Versatile has unveiled a new line of front-wheel assist tractors that feature one of the largest cabs in the industry and a considerable increase in wheelbase and size. The styling of the new tractor is a departure from the existing Versatile front-wheel assist. A sloped hood offers visibility and features cues from the new Versatile design first introduced on the line of four-wheel drives. An increased grille area allows for better airflow with reduced maintenance and cleaning requirements. Combined with a longer wheelbase, this new design allows for tight turns, even with 30-inch row spacing. First introduced on the four-wheel drive, the new cab offers operator space and comfort. The door swings wide for easy entry and egress. The adjustable armrest features fingertip controls for ergonomic comfort and a seven-inch high-resolution display for electro-hydraulics and the tractor performance monitor. Multi-power sources are available including 110-volt AC and five volt USB ports. The new Versatile tractor is available in 260, 290 and 310 horsepower, which is provided by a Cummins QSL 9.0L featuring interim Tier 4 technology. The QSL features the Cummins Variable Geometry Turbo (VGT) for sharp response in the field and offers a torque rise of more than 40 per cent. A reversing fan system is available that works as needed, providing quiet operation and fuel savings. The fan reverses approximately every 20 minutes to blow out the grille, reducing maintenance. The transmission is a 16F x 9R full powershift transmission with push-button controls. Designed to work with the power bulge and torque curves of the Cummins engine, this transmission offers durability and smooth shifts in the field. Fuel capacity has been increased to 170 US gal.
Working in the intense heat of the summer sun can put workers at risk of heat stress, but heat stress can also hit you in places you wouldn't expect."Any job that causes your body temperature to rise has the potential to cause heat stress," says WSPS occupational hygiene consultant Michael Puccini. "Even jobs carried out in air-conditioned environments."Left unchecked, heat stress can lead to heat exhaustion, heat stroke, heart attack, and other physical health effects. Plus, it can be damaging to business, by way of lost productivity, disability costs, and fines and penalties.Prepare for the heat nowThese heat waves may last only a week or two, but in this time workers can suffer debilitating effects and even death. A few simple steps taken now can keep your people thriving and productive even in the hottest weather."Based on the internal responsibility system, everyone has a role to play," says WSPS occupational hygienist Warren Clements. "Employers, supervisors and workers can all make a difference in their workplaces."Steps for employers:Put a policy and procedures in place, based on a risk assessment. Ask questions, such as: Have workers been affected by heat in the past? Is work done in direct sunlight? Are there heat producing processes or equipment in the workplace? This will help you understand the magnitude of the issue. If heat stress may be a hazard, you may want to conduct heat stress measurements so you can develop a control plan. The plan should include engineering controls, such as insulating hot surfaces.Train all employees during orientation on the policy and procedures to manage the hazard. Include heat stress symptoms, how to prevent it, and what to do if someone starts showing symptoms. Heat stress training is particularly critical for young and new workers, as well as all manual workers. Research conducted by the Institute for Work & Health shows that heat strokes, sunstrokes and other heat illnesses disproportionately affect those on the job less than two months. Steps for supervisors: Acclimatize workers to hot conditions, and watch out for de-acclimatization. Workers can lose their tolerance in only four days. Schedule work in the hottest locations for cooler times of day. Build cool-down breaks into work schedules. Adjust the frequency and duration of breaks as needed. "Taking a break means going to a cooler work area or providing workers with periodic rest breaks and rest facilities in cooler conditions," says Warren. Get to know your workplace and your workers. "Are there certain jobs at elevated risk? Is anybody working outside today? 'Is so-and-so looking a little different from how he normally looks? A little more flushed? Sitting down more?'" Ensure ready access to cool water in convenient, visible locations. Workers need to replenish their fluids if they are becoming dehydrated. Supply protective equipment and clothing as needed, such as water-dampened cotton whole-body suits, cooling vests with pockets that hold cold packs, and water-cooled suits. Monitor weather forecasts. "If it's Tuesday and you know superhot weather is coming on Thursday, ask yourself, 'Who will be working then? What will they be doing? Who... or what... should I watch out for?'" Be extra vigilant in extreme conditions. "Check on workers frequently. If you can't do this, then assign a temporary pair of eyes to do it for you." Steps for workers: Watch out for each other and speak up. "People suffering from heat stress don't always recognize their own symptoms. If anyone's behaviour is 'more than usual' - more sweating, more flushed, hyperventilating - it could be a sign of heat stress." Other signs could include rashes, muscle cramping, dizziness, fainting, and headaches.For more information, visit: Workplace Safety & Prevention Services
AgSafe has launched a new free safety self-assessment web tool for B.C.’s agriculture organizations and other naturally aligned industries.The Safety Ready Certificate of Recognition (COR) Self-Assessment website is designed to assist organizations in assessing their readiness for a COR program audit.The self-assessment tool begins with a questionnaire to be completed by the person responsible for overseeing the Safety Management System in your organization. Once that is done, the tool provides feedback on your readiness for a COR review. The web tool will also help you calculate your organization’s potential WorkSafeBC incentive.“There are three levels of readiness and depending on your organization’s situation you may need assistance from an AgSafe advisor or consultant to become audit ready,” explained Wendy Bennett, executive director of AgSafe. “This is a resource designed to streamline the process and help employers become more familiar with what they need to do to reduce safety risks in their organization.”Between 2013 and 2017, 641 agricultural workers were seriously injured and seven killed in work-related incidents.AgSafe is committed to reducing the number of agriculture-related workplace deaths and injuries. They are doing this by offering health and safety programs, training and evaluation, consultation and guidance.As a COR program certifying partner AgSafe offers a Certificate of Recognition (COR) program for large and small employers in British Columbia’s agriculture industry and ensures that WorkSafeBC is aware of all COR certified agriculture employers.AgSafe’s COR Self-Assessment Tool is also available to companies that are not classified as agriculture, such as landscape professionals, tree services, or animal handling, but have been advised to work with AgSafe for their COR certification.AgSafe does not charge for use of the assessment tool. Set up your account by going to the COR Self-Assessment website.For more information about AgSafe services or agriculture workplace safety call 1-877-533-1789 or visit www.AgSafeBC.ca
January 24, 2018, Charlottetown, PEI – It will now be elementary for a P.E.I. raw potato preparation operation to inspect the inside of potatoes with new technology called the Sherlock Separator-2400. RWL Holdings Ltd. in Travellers Rest, PEI, recently received more than $400,000 from the Atlantic Canada Opportunities Agency (ACOA) and the province for food safety equipment. The Sherlock Separator is a chemical imaging machine that uses new technology to inspect the inside of the potato without removing the peel. READ MORE
Pests in food-handling environments threaten product safety and create an unpleasant sight for employees and visitors. In addition to physically damaging the product or its packaging, some pests can carry and transmit diseases like E. coli, Salmonella and hantavirus. When products become infested or contaminated, they not only impact a business’s bottom line but also its reputation.
July 5, 2017, Langley, B.C. – Approximately 2,000 wildfires occur each year in British Columbia. The effect of wildfires on the province’s agriculture community can be devastating and costly.More than half of the wildfires in 2016 were caused by humans.With the wildfire season upon on us in B.C., there are measures that ranchers, farmers, growers, and others who make their living in agriculture can do to protect their workers and their property. Addressing potential fire hazards will significantly reduce the chances of a large-scale fire affecting your operation.Controlling the environment is important. Clear vegetation and wood debris to at least 10 metres from fences and structures; collect and remove generated wastes whether it is solid, semi-solid, or liquid; and reduce the timber fuel load elsewhere on your property and Crown or lease land to help mitigate the risk.In the case that you have to address fire on your property, have a well-rehearsed Emergency Response Plan (ERP) in place. The ERP should also include an Evacuation Plan for workers and livestock.“Having a map of your property, including Crown and lease lands, and a list of all of your workers and their locations is extremely helpful for evacuation and useful for first responders,” says Wendy Bennett, Executive Director of AgSafe. A list of materials and a safety data sheet of all liquid and spray chemicals and their locations should also be made available to attending firefighters.Bennett suggests checking the Government of BC Wildfire Status website regularly to report or monitor the status of fires in your area.For over twenty years AgSafe has been the expert on safety in the workplace for British Columbia’s agriculture industry and is committed to reducing the number of agriculture-related workplace deaths and injuries by offering health and safety programs, training, evaluation and consultation services.For more information about agriculture workplace safety or AgSafe services call 1-877-533-1789 or visit www.AgSafeBC.ca.
A recent consumer news story had me both laughing and squirming with discomfort. The laughter was in response to the memory of a similar incident involving my children. The squirming was a basic, guttural human reaction.

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Ontario Harvest Gala
Thu Nov 01, 2018
Fall Harvest
Mon Nov 05, 2018
Potato Growers of Alberta Annual General Meeting
Tue Nov 13, 2018 @ 8:00am - 05:00pm

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.