Chemicals

February 7, 2018, Guelph, Ont – The Pest Management Regulatory Agency (PMRA) recently announced the approval of a minor use label expansion registration for Reason 500SC fungicide for control of downy mildew on basil and an amendment to update the label to include management of downy mildew on the new Brassica vegetable crop groups 5-13 and 4-13B in Canada. The head and stem Brassica vegetable group includes cabbage, napa cabbage, Brussels sprouts, cauliflower and broccoli and the new Brassica leafy greens crop group includes arugula, Chinese broccoli, Chinese cabbage, bok choy, collards, cress, kale, mizuna, mustard greens, etc. Reason fungicide was already labeled for use on a number of crops in Canada for control of several diseases. These minor use projects were submitted by Ontario as a result of minor use priorities established by growers and extension personnel. Reason fungicide is toxic to aquatic organisms and may be harmful to beneficial predatory or parasitic arthropods. Do not apply this product or allow drift to other crops or non-target areas. Do not contaminate off-target areas or aquatic habitats when spraying or when cleaning and rinsing spray equipment or containers. Follow all other precautions, restrictions and directions for use on the Reason fungicide label carefully. For a copy of the new minor use label contact your local crop specialist, regional supply outlet or visit the PMRA label site https://www.canada.ca/en/health-canada/services/consumer-product-safety/pesticides-pest-management/registrants-applicants/tools/pesticide-label-search.html
December 12, 2017, Guelph, Ont – Syngenta Canada Inc. recently announced that Orondis Ultra fungicide is now available in a premix formulation. Orondis Ultra combines mandipropamid (FRAC Group 40) with oxathiapiprolin (FRAC Group 49) to provide protection against late blight (Phytophthora infestans). Orondis Ultra works through translaminar and acropetal activity, moving across the leaf surface as well as upwards into new growth via the plant’s xylem, or water-conducting vessels. Both modes of action protect the plant during periods of active growth. Previously, a case of Orondis Ultra contained two components – Orondis Ultra A and Orondis Ultra B – that required individual measuring and tank mixing. Now, the new premix formulation has a single product label, meaning the components no longer require mixing prior to use, and will be available in a 4 x 3.78 L case. “Weather conditions in-season can create the conditions needed for late blight to develop and thrive,” explains Eric Phillips, product lead for fungicides and insecticides with Syngenta Canada. “The new Orondis Ultra premix formulation helps make proactive late blight management more convenient for growers.” Orondis Ultra is also registered for aerial application in potatoes. In addition to potatoes, Orondis Ultra can be used on head and stem brassica vegetables, including broccoli and cabbage, bulb vegetables, such as onion and garlic, leafy vegetables, such as arugula and celery, and cucurbit vegetables, including cucumber and squash. See the Orondis UItra label for a complete list of crops and diseases. Orondis Ultra will be available for purchase as a premix formulation for the 2018 season. For more information about Orondis Ultra, visit Syngenta.ca, contact your local Syngenta representative or call 877-964-3682.
July 26, 2017, Ontario - Stemphylium leaf blight (Stemphylium vesicarium) of onion starts as yellow-tan, water-soaked lesions developing into elongated spots. As these spots cover the entire leaves, onions prematurely defoliate thereby reducing the yield and causing the crop to be more susceptible to other pathogens. Stemphylium was first identified in Ontario in 2008 and has since spread throughout the Holland Marsh and other onion growing areas in southwestern Ontario.Stemphylium leaf blight can sometimes be misdiagnosed as purple blotch (Alternaria porri), as they both have very similar symptoms initially. Purple blotch has sunken tan to white lesions with purple centers while Stemphylium tends to have tan lesions without the purple centers.Stemphylium spores are dispersed by wind. Spore sampling at the Muck Crops Research Station using a Burkard seven-day spore sampler detected an average of 33 spores/m3 in 2015 and seven spores/m3 in 2016. In ideal conditions, leaf spot symptoms occur six days after initial infection. Stemphylium tends to infect dead tissue or wounds, often as a result of herbicide damage, insect feeding or from extreme weather. Older onion leaves are more susceptible to infection than younger leaves and symptoms are traditionally observed after the plants have reached the three- to four-leaf stage.Over the last few years, Botrytis leaf blight (Botrytis squamosa) has become less of an issue and has been overtaken by Stemphylium as the most important onion disease — other than maybe downy mildew. This may be because the fungicides used to target Stemphylium are likely managing Botrytis as well. Since Stemphylium can be so devastating and hard to control, fungicides are now being applied earlier in the season which may be preventing Botrytis to become established. Botrytis squamosa overwinters as sclerotia in the soil and on crop debris left from the previous year and infects onions in mid-June when temperatures and leaf wetness are favourable for infection. In the Holland Marsh, Stemphylium lesions were first observed on June 29, 2015 and July 7, 2016.The primary method of management is through foliar fungicides such as Luna Tranquility, Quadris Top and Sercadis. Keep in mind that Sercadis and Luna Tranquility both contain a group 7 fungicide so remember to rotate and do not make sequential applications. The effectiveness of these fungicides in the future depends on the spray programs you choose today. There are already Stemphylium isolates insensitive to several fungicides in New York so resistance is a real and very serious issue with this disease. Remember to rotate fungicide groups with different modes of actions to reduce the possibility of resistance. A protective fungicide is best applied when the onion crop has reached the three-leaf stage, however it may not be necessary in dry years.Research is currently being conducted at the Muck Crops Research Station to improve forecasting models to identify the optimal timing for commercial growers to achieve good control. BOTCAST disease forecasting model is available in some areas of Ontario to help growers predict the activity of the disease. Warm, wet weather between 18-26°C is most favourable for disease development. Regular field scouting is still the best method to assess disease levels.Plant spacing that permits better air movement and irrigation schedules that do not extend leaf wetness periods may be helpful in some areas. Recent work at the Muck Crops Research Station has shown that spores increase two to 72 hours after rainfall with eight hours of leaf wetness to be optimal for the pathogen. Irrigate overnight if possible so by morning the leaves can dry out and you don’t prolong that leaf wetness period.To lower inoculum levels it is crucial to remove or bury cull piles and to bury leaf debris left from the previous year’s crop through deep cultivation. Stemphylium of onion has many hosts including leeks, garlic, asparagus and even European pear. Take the time to rogue out volunteer onions or other Allium species in other crops nearby and remove unnecessary asparagus or pear trees to lower inoculum levels. As with any other foliar disease of onion, it is beneficial to rotate with non-host crops for three years.To prevent the development of resistance, it is essential to always rotate between different fungicide groups and/or tank mix with a broad spectrum insecticide. Current products registered for Stemphylium leaf blight of onion are listed by fungicide group below:Group 7 - SercadisGroup 7/9 - Luna TranquilityGroup 11/3 - Quadris Top
July 25, 2017, Ontario - The Pest Management Regulatory Agency (PMRA) recently announced the approval of URMULE registrations for Confine Extra fungicide (mono and di-potassium salts of phosphorus acid 53%) for the suppression of bacterial leaf spot (Xanthomonas campestris p.v. vitians) on leaf lettuce in Canada.Where possible, rotate the use of Confine Extra (Group 33) with fungicides that have different modes of actions. Apply at a rate of 7 L/ha in a minimum of 100 L of water/hectare. Use a maximum of 6 foliar applications per growing season. Pre-harvest Interval (PHI) is 1 day.Confine Extra is currently registered for downy mildew of lettuce, endive, radicchio as well as most brassica crops.Follow all other precautions and directions for use on the Confine Extra label carefully.For a copy of the new minor use label visit the PMRA label site: http://pr-rp.hc-sc.gc.ca/ls-re/index-eng.php
April 10, 2017, Calgary, Alta – An exclusive new Canadian distribution agreement between bio-ferm and Nufarm Agriculture Inc. adds two biological fungicides to Nufarm’s horticultural line of crop protection solutions. Blossom Protect and Botector are now available from Nufarm in Canada, as part of the company’s lineup of herbicides, fungicides and insecticides for Canadian horticultural growers. “Biological fungicides make up an important and growing part of our fungicide portfolio,” says Maria Dombrowsky, horticultural specialist at Nufarm Agriculture Inc. “Blossom Protect and Botector are great complements to our existing products, and will allow Nufarm to continue to support growers and their IPM programs.” Blossom Protect is a biological fungicide that provides protection for pome fruit against fire blight (Erwinia amylovora). Botector is a biological fungicide used to protect grapes from botrytis (Botrytis cinerea). “bio-ferm products contain a unique mode of action that hinders the development of resistance,” says Werner Fischer, managing director with bio-ferm. “Our products are suitable for conventional and organic production, and bring the additional benefit of being safe for humans, animals and beneficials. They are certified through Ecocert Canada.” Blossom Protect and Botector are available exclusively through Nufarm Agriculture Inc., its distributors and retailer partners across Canada.
April 3, 2017, Guelph, Ont – Syngenta Canada recently launched Aprovia Top fungicide, a new tool for controlling foliar early blight and suppressing brown spot. Early blight, which is caused by the Alternaria solani fungus, is found in most potato growing regions. Foliar symptoms include small, brown, irregular or circular-shaped lesions that form on the potato plant’s lower leaves later in the season. The disease prefers warm, dry conditions to develop, and can be more severe in plants that are stressed and weakened. Brown spot, caused by the Alternaria alternata fungus, is closely related to early blight and is found wherever potatoes are grown. Unlike early blight, brown spot can occur at any point during the growing season, producing small, dark brown lesions on the leaf surface. Aprovia Top fungicide combines two modes of action with preventative and early curative activity on these two key diseases. Difenoconazole (Group 3) is absorbed by the leaf and moves from one side of the leaf to the other to protect both surfaces against disease. Solatenol (Group 7 SDHI) binds tightly to the leaf’s waxy layer and is gradually absorbed into the leaf tissue to provide residual protection. “After a strong start, a foliar application of Aprovia Top can be used to manage these key diseases and keep potato crops greener longer,” says Eric Phillips, fungicides and insecticides product lead with Syngenta Canada. Aprovia Top is available now for use in 2017 production. In potatoes, one case will treat up to 40 acres. At this time, maximum residue limits (MRLs) for Solatenol use on potatoes have been established for markets in Canada and the U.S. Growers should consult with their processor prior to use. In addition to potatoes, Aprovia Top can be used to control scab and powdery mildew in apples. Aprovia Top also provides control of early blight, powdery mildew, and Septoria leaf spot in fruiting vegetables, as well as powdery mildew, Alternaria blight and leaf spot in cucurbit vegetables. See the Aprovia Top label for a complete list of crops and diseases. For more information about Aprovia Top fungicide, please visit Syngenta.ca or the Customer Interaction Centre at 1‑87‑SYNGENTA (1‑877‑964‑3682).
Researchers are combining new digital tools, computer technologies and machine learning to bring cost-effective weed control solutions to the field. Although still in the early stages, this new high-tech solution is being designed as an advanced spot-spraying precision technology that will help farmers reduce input costs and add another management tool to their integrated management systems.  
January 8, 2018, Guelph, Ont – The Pest Management Regulatory Agency (PMRA) recently announced the approval of minor use label expansion registration for Prowl H2O herbicide for control of labeled weeds on transplanted field tomatoes grown in mineral soil in Canada. Prowl H2O was already labeled for use on a number of crops in Canada for control of several weeds. This minor use project was submitted by Ontario as a result of minor use priorities established by growers and extension personnel. Prowl H2O herbicide is toxic to aquatic organisms and non-target terrestrial plants. Do not apply this product or allow drift to other crops or non-target areas. Do not contaminate off-target areas or aquatic habitats when spraying or when cleaning and rinsing spray equipment or containers. In field tomatoes, do not apply Prowl H2O more than once in two consecutive years. Follow all other precautions, restrictions and directions for use on the Prowl H2O herbicide label carefully. For a copy of the new minor use label contact your local crop specialist, regional supply outlet or visit the PMRA label site.
December 11, 2017, Guelph, Ont – Bayer recently announced the launch of Sencor STZ, a new herbicide for broad-spectrum control of all major annual grass and broadleaf weeds in potatoes. Sencor STZ combines Sencor with a new Group 14 mode of action, providing Canadian potato growers a new weed control option for their field. As a pre-emergent herbicide, Sencor STZ has uptake through the roots and shoots of weeds, providing early season weed control during critical crop stages. The product works on emerged weeds and provides residual broad-spectrum control to weeds yet to germinate. It will be provided in a co-pak. “As the first innovation in the potato herbicide space in many years, Sencor STZ offers an exciting new tool for Canadian potato growers to combat a wide spectrum of weeds and maximize crop yield,” says Jon Weinmaster, crop and campaign marketing manager for horticulture and corn at Bayer. Sencor is a proven performer that delivers reliable broad-spectrum weed control to Canadian potato growers. Trials utilizing Sencor STZ have demonstrated efficacy against Group 2- and 7-resistant biotypes, while providing essential control of Group 5-resistant broadleaf weeds, demonstrating the added benefit of the product’s Group 14 herbicide. “Given the increasing occurrence of herbicide resistance and a potentially shrinking number of solutions available for combatting tough-to-control weeds, Sencor STZ presents a welcome opportunity for growers to ensure they have the crop protection they need,” says Weinmaster. “This new herbicide affirms Bayer’s position as a leader in potato solutions and our commitment to growing and furthering innovation within horticulture.” Sencor STZ will be available to potato growers in Eastern Canada and British Columbia for the 2018 season. Sencor STZ comprises Group 5 (metribuzin) and Group 14 (sulfentrazone) herbicides. For more information regarding Sencor STZ, growers are encouraged to talk to their local retailer or visit cropscience.bayer.ca/SencorSTZ.
April 17, 2017, Guelph, Ont – The Pest Management Regulatory Agency (PMRA) recently announced the approval of an URMULE registration for Prowl H2O herbicide for control of labeled weeds on direct seeded, green (bunching) onions grown on muck soil in eastern Canada and British Columbia. Prowl H2O herbicide was already labeled for use on a number of crops in Canada for control of weeds. The minor use project for green onions grown on muck soil was sponsored by Agriculture and Agri-Food Canada, Pest Management Centre (AAFC-PMC) as a result of minor use priorities established by growers and extension personnel. Prowl H2O herbicide is toxic to aquatic organisms and non-target terrestrial plants. Do not apply this product or allow drift to other crops or non-target areas. Do not contaminate off-target areas or aquatic habitats when spraying or when cleaning and rinsing spray equipment or containers. Follow all precautions and detailed directions for use on the Prowl H2O herbicide label carefully. For a copy of the new minor use label contact your local crop specialist, regional supply outlet or visit the PMRA label site http://www.hc-sc.gc.ca/cps-spc/pest/registrant-titulaire/tools-outils/label-etiq-eng.php .
April 17, 2017, Guelph, Ont – Health Canada’s Pest Management Regulatory Agency (PMRA) has completed a special review on Paraquat (Gramoxone Liquid Herbicide) and proposed a phase-out of the product. See part of the decision below: [PMRA] recently conducted a Special Review of Paraquat and concluded that changes to the Gramoxone Liquid Herbicide with Wetting Agent, Reg. No. 8661   (i.e. “Gramoxone”) product formulation and packaging are required. As a result of this decision, a phase-out of the current product is being implemented. As mandated by the PMRA, Syngenta will not be selling Gramoxone (in its current form) after March 31, 2017. The last date that retailers can sell this product is September 30, 2017. Growers may continue to use the current formulation of Gramoxone during the 2017 and 2018 seasons. After December 31, 2018, this formulation of Gramoxone must not be used and must be properly disposed of. Please contact CleanFarms (1-877-622-4460) for information regarding the pesticide disposal program in your area. Options to make this tool available to Canadian growers beyond December 31, 2018, are currently being considered and evaluated. We will update you in the future, as appropriate. In order to continue to use Gramoxone for 2017 and 2018, there are additional stewardship requirements that must be met: Gramoxone may only be sold to and used by individuals that hold an appropriate pesticide applicator certificate or license as recognized by the appropriate provincial/territorial pesticide regulatory agency. See amended label for changes in PPE and first aid instructions. Gramoxone may only be tank-mixed with products on the label. Retailers must provide a copy of the Paraquat Stewardship Counter Card to the end-user (i.e. grower, applicator, etc.) at the time of sale. These stewardship requirements can be found on the Gramoxone Product Page, short video and Powerpoint presentation.
March 1, 2017, Calgary, Alta – Chateau herbicide, by Valent Canada, Inc. is now registered for use on broccoli and caneberry. Broccoli and caneberry growers in Canada now have another tool to assist in the control of Group 2-acetolactate synthase (ALS) resistant weeds, such as red root pigweed, green pigweed, eastern black nightshade and common ragweed. Chateau, containing flumioxazin (51.1 per cent), is a residual pre-emergent herbicide. A PPO inhibitor, Chateau’s mode of action is different than many other herbicides, so it helps fight resistance, while providing long-lasting control of tough weeds including Group 2-resistant weeds. “Chateau has proven to be an effective herbicide on a wide range of crops” says Maria Dombrowsky, horticulture specialist at Nufarm Agriculture Inc. “I am pleased that this tool is now available to broccoli and caneberry growers for incorporation into their IPM program.” Chateau should be used in rotation with other herbicide modes of action. Chateau is also registered for use on other crops, including pome fruit, blueberries and strawberries. For more information, consult the complete product label at www.nufarm.ca/product/chateau/.
The use of biocontrol pest methods in horticulture is growing, whether it’s trap crops, pheromone traps, predatory insects or biopesticides.
February 9, 2018 – For growers, a fundamental element of integrated pest management is knowing what pest and beneficial species are in your fields. But what if there’s an insect and no one knows if it’s good or bad? That was the situation for apple growers in Washington when it came to the European earwig. The bugs were there, but no one knew if they helped growers or harmed their crop. In 2014, the same year Robert Orpet began his doctoral program, there was a bad outbreak of woolly apple aphids in Washington orchards. “The trees looked like they were covered in snow,” he remembered. “It was very visible, and people don’t like that.” Orpet was part of an interdisciplinary team looking into the aphid, and one of his tasks was to interview growers about natural predators. Although there was some scientific literature in Europe that suggested earwigs were aphid predators, very few growers named them as important beneficial natural enemies. Many, in fact, said they thought earwigs were pests that damaged their apples because they’d found earwigs in cracks in their fruit. Orpet had an idea why grower’s perceptions and the scientific literature might differ. “Earwigs are active at night, so people don’t see them eating aphids,” he said. “They also move into tight spaces, a behavior called thigmotaxis, so it wasn’t clear if the insects were causing the damage to the fruit or just sheltering in the damage.” Another possible explanation was that the European literature was just wrong. “What literature there was tended to be observational and anecdotal,” he said. “The question had never been tested experimentally in a realistic field situation.” So, with a graduate student grant from the Western Sustainable Agriculture Research and Education program, Orpet designed an experiment to test the positive and negative effects of earwigs in apple orchards. He set up experimental sections in four different orchards and, in each section, either added earwigs, removed earwigs or left them alone. Because of the insects’ small-space-seeking behaviour, they are easy to trap in corrugated cardboard rolls and move from one place to another. The results were pretty clear. First, earwigs are aphid predators. Not only did his numbers support that, he captured video of a single earwig completely consuming an aphid colony. (See it at youtube.com/watch?v=sSFakIgkfMI) “We measured it in a few different ways, but the maximum amount of woolly apple aphids was two to three times greater in the trees with fewer earwigs than the trees with more earwigs. Earwigs did suppress the woolly apple aphid.” The damage question was a bit more complex, but also came out in the earwigs’ favour. “We inspected apples very close to harvest when the apples were ripe,” he explained. “I looked at about 12,000 apples on the trees in the sections were earwigs had been augmented and removed. Overall, 97 per cent of the apples were good, and the chance of finding a good apple were the same in both the augmented and removal areas.” Orpet did find stem-bowl splitting in some apples – a flaw more common in the Gala variety – and there were earwigs in some of those splits. And in a handful – 17 apples in the augmented areas and five in the removal areas – those splits appeared to have been expanded by the insects. “My conclusion was the earwigs didn’t cause the cracking but did exploit the existing damage,” he explained. He’s scheduled to graduate in August and has already shared the findings at growers’ meetings: clear evidence that earwigs are beneficial natural predators in apple orchards. And, if growers are still skeptical, Orpet can always call up the video. Read more about the project at: projects.sare.org/sare_project/gw18-039/
February 1, 2018, Madison, WI – The Colorado potato beetle is notorious for its role in starting the pesticide industry – and for its ability to resist the insecticides developed to stop it. Managing the beetle costs tens of millions of dollars every year, but this is a welcome alternative to the billions of dollars in damage it could cause if left unchecked. To better understand this tenacious pest, a team of scientists led by University of Wisconsin–Madison entomologist Sean Schoville sequenced the beetle’s genome, probing its genes for clues to its surprising adaptability to new environments and insecticides. The new information sheds light on how this insect jumps to new plant hosts and handles toxins, and it will help researchers explore more ways to control the beetle. Schoville and colleagues from 33 other institutes and universities report their findings in the Jan. 31, 2018 issue of Scientific Reports. The Colorado potato beetle’s rapid spread, hardiness, and recognizable tiger-like stripes have caught global attention since it began infesting potatoes in the 1800s. The beetle was investigated as a potential agricultural weapon by Germany in the 1940s and its postwar spread into the Soviet bloc stoked an anti-American propaganda campaign to pin the invasion on outsiders. More benignly, it has been featured on many countries’ stamps and is used in classrooms to educate about insect lifecycles. But it was the beetle’s ability to rapidly develop resistance to insecticides and to spread to climates previously thought inhospitable that has fascinated and frustrated entomologists for decades. “All that effort of trying to develop new insecticides is just blown out of the water by a pest like this that can just very quickly overcome it,” says Schoville. “That poses a challenge for potato growers and for the agricultural entomologists trying to manage it. And it’s just fascinating from an evolutionary perspective.” Within the beetle’s genome, Schoville’s team found a diverse and large array of genes used for digesting plant proteins, helping the beetle thrive on its hosts. The beetle also had an expanded number of genes for sensing bitter tastes, likely because of their preference for the bitter nightshade family of plants, of which potatoes are a member. But when it came to the pest’s infamous ability to overcome insecticides, the researchers were surprised to find that the Colorado potato beetle’s genome looked much like those of its less-hardy cousins. The team did not find new resistance-related genes to explain the insect’s tenaciousness. “So this is what's interesting – it wasn't by diversifying their genome, adding new genes, that would explain rapid pesticide evolution,” says Schoville. “So it leaves us with a whole bunch of new questions to pursue how that works.” Schoville and his collaborators see their research as a resource for the diverse group of scientists studying how to control the beetle as well as its life history and evolution. “What this genome will do is enable us to ask all sorts of new questions around insects, why they’re pests and how they’ve evolved,” says Yolanda Chen, a professor at the University of Vermont and another leader of the beetle genome effort. “And that’s why we’re excited about it.” The genome did provide a clue to the beetle’s known sensitivity to an alternative control system, known as RNA interference, or RNAi for short. The nucleic acid RNA translates the genetic instructions from DNA into proteins, and RNAi uses gene-specific strands of RNA to interfere with and degrade those messages. In the beetle, RNAi can be used to gum up its cellular machinery and act as a kind of insecticide. The Colorado potato beetle has an expanded RNAi processing pathway, meaning it could be particularly amenable to experimental RNAi control methods. Schoville and Chen are now sequencing another 100 genomes of the Colorado potato beetle and its close relatives to continue investigating the hardiness and adaptability that have captured so many people’s attention for the past 150 years.
January 8, 2018, Guelph, Ont – The Pest Management Regulatory Agency (PMRA) recently announced the approval of a Minor Use label expansion of Delegate Insecticide for suppression of flea beetles on several root vegetables. Crops added to the label are: Radish Horseradish Oriental Radish Rutabaga Turnip Carrot Delegate was already labeled for control of diamondback moth, cabbage looper and imported cabbageworm on these crops.  Users should consult the complete label before using Delegate Insecticide and follow all other precautions and directions for use on the label carefully.
December 8, 2017, Ithaca, NY – The New York State Department of Agriculture and Markets recently confirmed that the spotted lanternfly – an invasive insect originating in East Asia – has been found in New York state. This invasive pest has also been discovered in Pennsylvania and other states, and is a potential threat to important agricultural crops, including grapes, apples, hops and forest products. According to the Canadian Food Inspection Agency (CFIA), the pest is not known to occur in Canada and is not yet on Canada's list of regulated pests. However, it may appear in Canada. Any producers who believe they have found suspect specimens are urged to please contact the CFIA. Tim Weigle, statewide grape and hops integrated pest management specialist with the New York State Integrated Pest Management Program, works with grape and hop growers in implementing research-based IPM practices in environmentally and economically sustainable ways. He says the spotted lanternfly could rapidly expand its range by laying eggs on motor vehicles. “The name spotted lanternfly is a bit misleading as this plant hopper grows to one-inch in size as an adult,” he said. “Large groups of both the immature and adult stages of laternfly feed on plant stems and leaves from early spring to September, weakening and possibly killing the plant. They also excrete a sugary, sticky substance similar to honeydew, which leads to the growth of sooty mold on grapes, apples and hops making them unmarketable. “I would be concerned about any shipments that people are getting that originated in the Pennsylvania counties that are currently under quarantine. While this pest seems to prefer tree of heaven, it appears to be able to lay its eggs on any smooth surface like cars, trucks, tractors or stone. Therefore, the major traffic corridors coming up into the Hudson Valley and Finger Lakes area will probably have a greater potential for spotted lanternfly eggs being transported in due to vehicle traffic.” Elizabeth Lamb, coordinator for the ornamental integrated pest management team for the New York State Integrated Pest Management Program says that grape, hop and ornamental growers, along with tree-fruit producers, are most likely to be impacted by this invasive pest. “The industries most likely to be affected by spotted lanternfly in New York state are grapes and hops, tree-fruit production, and ornamentals,” she said. “Once you consider the ornamental hosts, it becomes an issue for homeowners and landscapers, too. So the first and most important piece in controlling spotted lantern fly is observation and monitoring – by growers and the public. “A small bright spot: the biology of the insect provides several avenues for using different methods of control. Egg masses can be scraped off the smooth surfaces where they are laid and then destroyed. Nymphs crawl up and down tree trunks to feed so they can be caught on sticky traps at the right time. Adults have a preference or requirement for feeding on Ailanthus trees (Tree of Heaven), so the Ailanthus can be used as ‘trap’ trees where pesticides are applied very specifically to control the insect without widespread use.”
November 14, 2017, Edmonton, Alta – The HortSnacks-to-Go 2017/2018 webinar series continues on November 20, 2017, with Using Biocontrols in Field Scale Fruit and Vegetable Crops. “Presenter Ronald Valentin is North America technical lead at Bioline AgroSciences,” says Dustin Morton, commercial horticulture specialist with Alberta Agriculture and Forestry. “He’ll be looking at how other areas of the world are using biological controls in field scale vegetable and fruit crops and how Alberta producers can take advantage of this growing area.” The webinar takes place at 1:30 p.m. MT and there is no charge to attend. To register, email Dustin Morton or go to https://attendee.gotowebinar.com/register/8212513318118325250

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Berry Growers of Ontario Annual Meeting & Conference
Tue Feb 20, 2018 @ 9:00AM - 05:00PM
Sour Cherry & Haskap Production Workshop
Wed Feb 21, 2018 @ 8:00AM - 04:00PM
2018 Ontario Fruit & Vegetable Convention
Wed Feb 21, 2018 @ 8:00AM - 05:00PM